| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| ImageMagick is free and open-source software used for editing and manipulating digital images. ImageMagick versions lower than 14.8.2 include insecure functions: SeekBlob(), which permits advancing the stream offset beyond the current end without increasing capacity, and WriteBlob(), which then expands by quantum + length (amortized) instead of offset + length, and copies to data + offset. When offset ≫ extent, the copy targets memory beyond the allocation, producing a deterministic heap write on 64-bit builds. No 2⁶⁴ arithmetic wrap, external delegates, or policy settings are required. This is fixed in version 14.8.2. |
| h2 is a pure-Python implementation of a HTTP/2 protocol stack. Prior to version 4.3.0, an HTTP/2 request splitting vulnerability allows attackers to perform request smuggling attacks by injecting CRLF characters into headers. This occurs when servers downgrade HTTP/2 requests to HTTP/1.1 without properly validating header names/values, enabling attackers to manipulate request boundaries and bypass security controls. This issue has been patched in version 4.3.0. |
| ImageMagick is free and open-source software used for editing and manipulating digital images. Prior to versions 6.9.13-28 and 7.1.2-2 for ImageMagick's 32-bit build, a 32-bit integer overflow in the BMP encoder’s scanline-stride computation collapses bytes_per_line (stride) to a tiny value while the per-row writer still emits 3 × width bytes for 24-bpp images. The row base pointer advances using the (overflowed) stride, so the first row immediately writes past its slot and into adjacent heap memory with attacker-controlled bytes. This is a classic, powerful primitive for heap corruption in common auto-convert pipelines. This issue has been patched in versions 6.9.13-28 and 7.1.2-2. |
| cJSON 1.5.0 through 1.7.18 allows out-of-bounds access via the decode_array_index_from_pointer function in cJSON_Utils.c, allowing remote attackers to bypass array bounds checking and access restricted data via malformed JSON pointer strings containing alphanumeric characters. |
| ImageMagick is free and open-source software used for editing and manipulating digital images. Prior to ImageMagick versions 6.9.13-28 and 7.1.2-2, a format string bug vulnerability exists in InterpretImageFilename function where user input is directly passed to FormatLocaleString without proper sanitization. An attacker can overwrite arbitrary memory regions, enabling a wide range of attacks from heap overflow to remote code execution. This issue has been patched in versions 6.9.13-28 and 7.1.2-2. |
| ImageMagick is free and open-source software used for editing and manipulating digital images. Prior to versions 6.9.13-28 and 7.1.2-2, passing a geometry string containing only a colon (":") to montage -geometry leads GetGeometry() to set width/height to 0. Later, ThumbnailImage() divides by these zero dimensions, triggering a crash (SIGFPE/abort), resulting in a denial of service. This issue has been patched in versions 6.9.13-28 and 7.1.2-2. |
| ImageMagick is free and open-source software used for editing and manipulating digital images. Prior to versions 6.9.13-27 and 7.1.2-1, the magnified size calculations in ReadOneMNGIMage (in coders/png.c) are unsafe and can overflow, leading to memory corruption. This issue has been patched in versions 6.9.13-27 and 7.1.2-1. |
| Firebird is a relational database. Prior to versions 3.0.13, 4.0.6, and 5.0.3, there is an XDR message parsing NULL pointer dereference denial-of-service vulnerability in Firebird. This specific flaw exists within the parsing of xdr message from client. It leads to NULL pointer dereference and DoS. This issue has been patched in versions 3.0.13, 4.0.6, and 5.0.3. |
| The Ruby SAML library is for implementing the client side of a SAML authorization. In versions 1.18.0 and below, a denial-of-service vulnerability exists in ruby-saml even with the message_max_bytesize setting configured. The vulnerability occurs because the SAML response is validated for Base64 format prior to checking the message size, leading to potential resource exhaustion. This is fixed in version 1.18.1. |
| ModSecurity is an open source, cross platform web application firewall (WAF) engine for Apache, IIS and Nginx. In versions 2.9.11
and below, an attacker can override the HTTP response’s Content-Type, which could lead to several issues depending on the HTTP scenario. For example, we have demonstrated the potential for XSS and arbitrary script source code disclosure in the latest version of mod_security2. This issue is fixed in version 2.9.12. |
| A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 9205 of biosig.c on the current master branch (35a819fa), when the Tag is 133:
else if (tag==133) //0x85
{
curPos += ifread(buf,1,len,hdr); |
| A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 9184 of biosig.c on the current master branch (35a819fa), when the Tag is 131:
else if (tag==131) //0x83
{
// Patient Age
if (len!=7) fprintf(stderr,"Warning MFER tag131 incorrect length %i!=7\n",len);
curPos += ifread(buf,1,len,hdr); |
| A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 9141 of biosig.c on the current master branch (35a819fa), when the Tag is 67:
else if (tag==67) //0x43: Sample skew
{
int skew=0; // [1]
curPos += ifread(&skew, 1, len,hdr);
In this case, the address of the newly-defined integer `skew` \[1\] is overflowed instead of `buf`. This means a stack overflow can occur using much smaller values of `len` in this code path. |
| A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 9191 of biosig.c on the current master branch (35a819fa), when the Tag is 65:
else if (tag==65) //0x41: patient event
{
// event table
curPos += ifread(buf,1,len,hdr); |
| A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 9090 of biosig.c on the current master branch (35a819fa), when the Tag is 64:
else if (tag==64) //0x40
{
// preamble
char tmp[256]; // [1]
curPos += ifread(tmp,1,len,hdr);
In this case, the overflowed buffer is the newly-declared `tmp` \[1\] instead of `buf`. While `tmp` is larger than `buf`, having a size of 256 bytes, a stack overflow can still occur in cases where `len` is encoded using multiple octets and is greater than 256. |
| A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8970 of biosig.c on the current master branch (35a819fa), when the Tag is 63:
else if (tag==63) {
uint8_t tag2=255, len2=255;
count = 0;
while ((count<len) && !(FlagInfiniteLength && len2==0 && tag2==0)){
curPos += ifread(&tag2,1,1,hdr);
curPos += ifread(&len2,1,1,hdr);
if (VERBOSE_LEVEL==9)
fprintf(stdout,"MFER: tag=%3i chan=%2i len=%-4i tag2=%3i len2=%3i curPos=%i %li count=%4i\n",tag,chan,len,tag2,len2,curPos,iftell(hdr),(int)count);
if (FlagInfiniteLength && len2==0 && tag2==0) break;
count += (2+len2);
curPos += ifread(&buf,1,len2,hdr);
Here, the number of bytes read is not the Data Length decoded from the current frame in the file (`len`) but rather is a new length contained in a single octet read from the same input file (`len2`). Despite this, a stack-based buffer overflow condition can still occur, as the destination buffer is still `buf`, which has a size of only 128 bytes, while `len2` can be as large as 255. |
| A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8850 of biosig.c on the current master branch (35a819fa), when the Tag is 13:
else if (tag==13) {
if (len>8) fprintf(stderr,"Warning MFER tag13 incorrect length %i>8\n",len);
curPos += ifread(&buf,1,len,hdr); |
| A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8842 of biosig.c on the current master branch (35a819fa), when the Tag is 12:
else if (tag==12) //0x0C
{
// sampling resolution
if (len>6) fprintf(stderr,"Warning MFER tag12 incorrect length %i>6\n",len);
val32 = 0;
int8_t v8;
curPos += ifread(&UnitCode,1,1,hdr);
curPos += ifread(&v8,1,1,hdr);
curPos += ifread(buf,1,len-2,hdr);
In addition to values of `len` greater than 130 triggering a buffer overflow, a value of `len` smaller than 2 will also trigger a buffer overflow due to an integer underflow when computing `len-2` in this code path. |
| A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8824 of biosig.c on the current master branch (35a819fa), when the Tag is 11:
else if (tag==11) //0x0B
{
// Fs
if (len>6) fprintf(stderr,"Warning MFER tag11 incorrect length %i>6\n",len);
double fval;
curPos += ifread(buf,1,len,hdr); |
| A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8785 of biosig.c on the current master branch (35a819fa), when the Tag is 8:
else if (tag==8) {
if (len>2) fprintf(stderr,"Warning MFER tag8 incorrect length %i>2\n",len);
curPos += ifread(buf,1,len,hdr); |