| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The elf_parse_notes function in elf.c in the Binary File Descriptor (BFD) library (aka libbfd), as distributed in GNU Binutils 2.30, allows remote attackers to cause a denial of service (out-of-bounds read and segmentation violation) via a note with a large alignment. |
| LibreOffice before 5.4.5 and 6.x before 6.0.1 allows remote attackers to read arbitrary files via =WEBSERVICE calls in a document, which use the COM.MICROSOFT.WEBSERVICE function. |
| Reflected XSS exists in PHP Scripts Mall Website Seller Script 2.0.3 via the Listings Search feature. |
| Cross Site Scripting (XSS) exists in PHP Scripts Mall Slickdeals / DealNews / Groupon Clone Script 3.0.2 via a User Profile Field parameter. |
| Cross Site Scripting (XSS) exists in PHP Scripts Mall Learning and Examination Management System Script 2.3.1 via a crafted message. |
| Cross Site Scripting (XSS) exists in PHP Scripts Mall Multi religion Responsive Matrimonial 4.7.2 via a user profile update parameter. |
| SQL Injection exists in PHP Scripts Mall Select Your College Script 2.0.2 via a Login Parameter. |
| Cross Site Scripting (XSS) exists in PHP Scripts Mall Bitcoin MLM Software 1.0.2 via a profile field. |
| Cross Site Scripting (XSS) exists in PHP Scripts Mall Lawyer Search Script 1.0.2 via a profile update parameter. |
| Arbitrary File Upload and Remote Code Execution exist in PHP Scripts Mall Schools Alert Management Script 2.0.2 via a profile picture. |
| SQL Injection exists in PHP Scripts Mall Schools Alert Management Script 2.0.2 via the Login Parameter. |
| Cross Site Scripting (XSS) exists in PHP Scripts Mall Facebook Clone Script. |
| Sophos SafeGuard Enterprise before 8.00.5, SafeGuard Easy before 7.00.3, and SafeGuard LAN Crypt before 3.95.2 are vulnerable to Local Privilege Escalation via IOCTL 0x802022E0. By crafting an input buffer we can control the execution path to the point where the constant 0x12 will be written to a user-controlled address. We can take advantage of this condition to modify the SEP_TOKEN_PRIVILEGES structure of the Token object belonging to the exploit process and grant SE_DEBUG_NAME privilege. This allows the exploit process to interact with higher privileged processes running as SYSTEM and execute code in their security context. |
| Sophos SafeGuard Enterprise before 8.00.5, SafeGuard Easy before 7.00.3, and SafeGuard LAN Crypt before 3.95.2 are vulnerable to Local Privilege Escalation via IOCTL 0x8020601C. By crafting an input buffer we can control the execution path to the point where a global variable will be written to a user controlled address. We can take advantage of this condition to zero-out the pointer to the security descriptor in the object header of a privileged process or modify the security descriptor itself and run code in the context of a process running as SYSTEM. |
| Sophos SafeGuard Enterprise before 8.00.5, SafeGuard Easy before 7.00.3, and SafeGuard LAN Crypt before 3.95.2 are vulnerable to Local Privilege Escalation via IOCTL 0x80202014. By crafting an input buffer we can control the execution path to the point where the constant 0xFFFFFFF will be written to a user-controlled address. We can take advantage of this condition to modify the SEP_TOKEN_PRIVILEGES structure of the Token object belonging to the exploit process and grant SE_DEBUG_NAME privilege. This allows the exploit process to interact with higher privileged processes running as SYSTEM and execute code in their security context. |
| Sophos SafeGuard Enterprise before 8.00.5, SafeGuard Easy before 7.00.3, and SafeGuard LAN Crypt before 3.95.2 are vulnerable to Local Privilege Escalation via multiple IOCTLs, e.g., 0x8810200B, 0x8810200F, 0x8810201B, 0x8810201F, 0x8810202B, 0x8810202F, 0x8810203F, 0x8810204B, 0x88102003, 0x88102007, 0x88102013, 0x88102017, 0x88102027, 0x88102033, 0x88102037, 0x88102043, and 0x88102047. When some conditions in the user-controlled input buffer are not met, the driver writes an error code (0x2000001A) to a user-controlled address. Also, note that all the aforementioned IOCTLs use transfer type METHOD_NEITHER, which means that the I/O manager does not validate any of the supplied pointers and buffer sizes. So, even though the driver checks for input/output buffer sizes, it doesn't validate if the pointers to those buffers are actually valid. So, we can supply a pointer for the output buffer to a kernel address space address, and the error code will be written there. We can take advantage of this condition to modify the SEP_TOKEN_PRIVILEGES structure of the Token object belonging to the exploit process and grant SE_DEBUG_NAME privilege. This allows the exploit process to interact with higher privileged processes running as SYSTEM and execute code in their security context. |
| Sophos SafeGuard Enterprise before 8.00.5, SafeGuard Easy before 7.00.3, and SafeGuard LAN Crypt before 3.95.2 are vulnerable to Local Privilege Escalation via IOCTL 0x80206024. By crafting an input buffer we can control the execution path to the point where a global variable will be written to a user controlled address. We can take advantage of this condition to zero-out the pointer to the security descriptor in the object header of a privileged process or modify the security descriptor itself and run code in the context of a process running as SYSTEM. |
| Sophos SafeGuard Enterprise before 8.00.5, SafeGuard Easy before 7.00.3, and SafeGuard LAN Crypt before 3.95.2 are vulnerable to Local Privilege Escalation via IOCTL 0x80202298. By crafting an input buffer we can control the execution path to the point where the nt!memset function is called to zero out contents of a user-controlled address. We can take advantage of this condition to zero-out the pointer to the security descriptor in the object header of a privileged process or modify the security descriptor itself and run code in the context of a process running as SYSTEM. |
| Sophos SafeGuard Enterprise before 8.00.5, SafeGuard Easy before 7.00.3, and SafeGuard LAN Crypt before 3.95.2 are vulnerable to Local Privilege Escalation via IOCTL 0x80206040. By crafting an input buffer we can control the execution path to the point where the constant DWORD 0 will be written to a user-controlled address. We can take advantage of this condition to zero-out the pointer to the security descriptor in the object header of a privileged process or modify the security descriptor itself and run code in the context of a process running as SYSTEM. |
| In the WebRTC component in DuckDuckGo 4.2.0, after visiting a web site that attempts to gather complete client information (such as https://ip.voidsec.com), the browser can disclose a private IP address in a STUN request. |