Total
274738 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2023-32538 | 1 Fujielectric | 2 Tellus, Tellus Lite | 2024-12-23 | 7.8 High |
Stack-based buffer overflow vulnerability exists in TELLUS v4.0.15.0 and TELLUS Lite v4.0.15.0. Opening a specially crafted SIM2 file may lead to information disclosure and/or arbitrary code execution. This vulnerability is different from CVE-2023-32273 and CVE-2023-32201. | ||||
CVE-2023-32288 | 1 Fujielectric | 2 Tellus, Tellus Lite | 2024-12-23 | 7.8 High |
Out-of-bounds read vulnerability exists in TELLUS v4.0.15.0 and TELLUS Lite v4.0.15.0. Opening a specially crafted SIM file may lead to information disclosure and/or arbitrary code execution. | ||||
CVE-2023-32276 | 1 Fujielectric | 2 Tellus, Tellus Lite | 2024-12-23 | 7.8 High |
Stack-based buffer overflow vulnerability exists in TELLUS v4.0.15.0 and TELLUS Lite v4.0.15.0. Opening a specially crafted V8 file may lead to information disclosure and/or arbitrary code execution. | ||||
CVE-2023-32273 | 1 Fujielectric | 2 Tellus, Tellus Lite | 2024-12-23 | 7.8 High |
Stack-based buffer overflow vulnerability exists in TELLUS v4.0.15.0 and TELLUS Lite v4.0.15.0. Opening a specially crafted SIM2 file may lead to information disclosure and/or arbitrary code execution. This vulnerability is different from CVE-2023-32538 and CVE-2023-32201. | ||||
CVE-2023-32270 | 1 Fujielectric | 2 Tellus, Tellus Lite | 2024-12-23 | 7.8 High |
Access of memory location after end of buffer issue exists in TELLUS v4.0.15.0 and TELLUS Lite v4.0.15.0. Opening a specially crafted V8 file may lead to information disclosure and/or arbitrary code execution. | ||||
CVE-2023-32201 | 1 Fujielectric | 2 Tellus, Tellus Lite | 2024-12-23 | 7.8 High |
Stack-based buffer overflow vulnerability exists in TELLUS v4.0.15.0 and TELLUS Lite v4.0.15.0. Opening a specially crafted SIM2 file may lead to information disclosure and/or arbitrary code execution. This vulnerability is different from CVE-2023-32538 and CVE-2023-32273. | ||||
CVE-2023-31239 | 1 Fujielectric | 1 V-server | 2024-12-23 | 7.8 High |
Stack-based buffer overflow vulnerability in V-Server v4.0.15.0 and V-Server Lite v4.0.15.0 and earlier allows an attacker to execute arbitrary code by having user open a specially crafted VPR file. | ||||
CVE-2024-11839 | 2024-12-23 | N/A | ||
Deserialization of Untrusted Data vulnerability in PlexTrac (Runbooks modules) which allows Object Injection and arbitrary file writes.This issue affects PlexTrac: from 1.61.3 before 2.8.1. | ||||
CVE-2024-11012 | 2024-12-23 | 6.3 Medium | ||
The The Notibar – Notification Bar for WordPress plugin for WordPress is vulnerable to arbitrary shortcode execution via njt_nofi_text AJAX action in all versions up to, and including, 2.1.4. This is due to the software allowing users to execute an action that does not properly validate a value before running do_shortcode. This makes it possible for authenticated attackers, with Subscriber-level access and above, to execute arbitrary shortcodes. | ||||
CVE-2021-47385 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2024-12-23 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: hwmon: (w83792d) Fix NULL pointer dereference by removing unnecessary structure field If driver read val value sufficient for (val & 0x08) && (!(val & 0x80)) && ((val & 0x7) == ((val >> 4) & 0x7)) from device then Null pointer dereference occurs. (It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers) Also lm75[] does not serve a purpose anymore after switching to devm_i2c_new_dummy_device() in w83791d_detect_subclients(). The patch fixes possible NULL pointer dereference by removing lm75[]. Found by Linux Driver Verification project (linuxtesting.org). [groeck: Dropped unnecessary continuation lines, fixed multipline alignment] | ||||
CVE-2021-47382 | 1 Linux | 1 Linux Kernel | 2024-12-23 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: s390/qeth: fix deadlock during failing recovery Commit 0b9902c1fcc5 ("s390/qeth: fix deadlock during recovery") removed taking discipline_mutex inside qeth_do_reset(), fixing potential deadlocks. An error path was missed though, that still takes discipline_mutex and thus has the original deadlock potential. Intermittent deadlocks were seen when a qeth channel path is configured offline, causing a race between qeth_do_reset and ccwgroup_remove. Call qeth_set_offline() directly in the qeth_do_reset() error case and then a new variant of ccwgroup_set_offline(), without taking discipline_mutex. | ||||
CVE-2021-47380 | 1 Linux | 1 Linux Kernel | 2024-12-23 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: HID: amd_sfh: Fix potential NULL pointer dereference devm_add_action_or_reset() can suddenly invoke amd_mp2_pci_remove() at registration that will cause NULL pointer dereference since corresponding data is not initialized yet. The patch moves initialization of data before devm_add_action_or_reset(). Found by Linux Driver Verification project (linuxtesting.org). [jkosina@suse.cz: rebase] | ||||
CVE-2021-47379 | 1 Linux | 1 Linux Kernel | 2024-12-23 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: fix UAF by grabbing blkcg lock before destroying blkg pd KASAN reports a use-after-free report when doing fuzz test: [693354.104835] ================================================================== [693354.105094] BUG: KASAN: use-after-free in bfq_io_set_weight_legacy+0xd3/0x160 [693354.105336] Read of size 4 at addr ffff888be0a35664 by task sh/1453338 [693354.105607] CPU: 41 PID: 1453338 Comm: sh Kdump: loaded Not tainted 4.18.0-147 [693354.105610] Hardware name: Huawei 2288H V5/BC11SPSCB0, BIOS 0.81 07/02/2018 [693354.105612] Call Trace: [693354.105621] dump_stack+0xf1/0x19b [693354.105626] ? show_regs_print_info+0x5/0x5 [693354.105634] ? printk+0x9c/0xc3 [693354.105638] ? cpumask_weight+0x1f/0x1f [693354.105648] print_address_description+0x70/0x360 [693354.105654] kasan_report+0x1b2/0x330 [693354.105659] ? bfq_io_set_weight_legacy+0xd3/0x160 [693354.105665] ? bfq_io_set_weight_legacy+0xd3/0x160 [693354.105670] bfq_io_set_weight_legacy+0xd3/0x160 [693354.105675] ? bfq_cpd_init+0x20/0x20 [693354.105683] cgroup_file_write+0x3aa/0x510 [693354.105693] ? ___slab_alloc+0x507/0x540 [693354.105698] ? cgroup_file_poll+0x60/0x60 [693354.105702] ? 0xffffffff89600000 [693354.105708] ? usercopy_abort+0x90/0x90 [693354.105716] ? mutex_lock+0xef/0x180 [693354.105726] kernfs_fop_write+0x1ab/0x280 [693354.105732] ? cgroup_file_poll+0x60/0x60 [693354.105738] vfs_write+0xe7/0x230 [693354.105744] ksys_write+0xb0/0x140 [693354.105749] ? __ia32_sys_read+0x50/0x50 [693354.105760] do_syscall_64+0x112/0x370 [693354.105766] ? syscall_return_slowpath+0x260/0x260 [693354.105772] ? do_page_fault+0x9b/0x270 [693354.105779] ? prepare_exit_to_usermode+0xf9/0x1a0 [693354.105784] ? enter_from_user_mode+0x30/0x30 [693354.105793] entry_SYSCALL_64_after_hwframe+0x65/0xca [693354.105875] Allocated by task 1453337: [693354.106001] kasan_kmalloc+0xa0/0xd0 [693354.106006] kmem_cache_alloc_node_trace+0x108/0x220 [693354.106010] bfq_pd_alloc+0x96/0x120 [693354.106015] blkcg_activate_policy+0x1b7/0x2b0 [693354.106020] bfq_create_group_hierarchy+0x1e/0x80 [693354.106026] bfq_init_queue+0x678/0x8c0 [693354.106031] blk_mq_init_sched+0x1f8/0x460 [693354.106037] elevator_switch_mq+0xe1/0x240 [693354.106041] elevator_switch+0x25/0x40 [693354.106045] elv_iosched_store+0x1a1/0x230 [693354.106049] queue_attr_store+0x78/0xb0 [693354.106053] kernfs_fop_write+0x1ab/0x280 [693354.106056] vfs_write+0xe7/0x230 [693354.106060] ksys_write+0xb0/0x140 [693354.106064] do_syscall_64+0x112/0x370 [693354.106069] entry_SYSCALL_64_after_hwframe+0x65/0xca [693354.106114] Freed by task 1453336: [693354.106225] __kasan_slab_free+0x130/0x180 [693354.106229] kfree+0x90/0x1b0 [693354.106233] blkcg_deactivate_policy+0x12c/0x220 [693354.106238] bfq_exit_queue+0xf5/0x110 [693354.106241] blk_mq_exit_sched+0x104/0x130 [693354.106245] __elevator_exit+0x45/0x60 [693354.106249] elevator_switch_mq+0xd6/0x240 [693354.106253] elevator_switch+0x25/0x40 [693354.106257] elv_iosched_store+0x1a1/0x230 [693354.106261] queue_attr_store+0x78/0xb0 [693354.106264] kernfs_fop_write+0x1ab/0x280 [693354.106268] vfs_write+0xe7/0x230 [693354.106271] ksys_write+0xb0/0x140 [693354.106275] do_syscall_64+0x112/0x370 [693354.106280] entry_SYSCALL_64_after_hwframe+0x65/0xca [693354.106329] The buggy address belongs to the object at ffff888be0a35580 which belongs to the cache kmalloc-1k of size 1024 [693354.106736] The buggy address is located 228 bytes inside of 1024-byte region [ffff888be0a35580, ffff888be0a35980) [693354.107114] The buggy address belongs to the page: [693354.107273] page:ffffea002f828c00 count:1 mapcount:0 mapping:ffff888107c17080 index:0x0 compound_mapcount: 0 [693354.107606] flags: 0x17ffffc0008100(slab|head) [693354.107760] raw: 0017ffffc0008100 ffffea002fcbc808 ffffea0030bd3a08 ffff888107c17080 [693354.108020] r ---truncated--- | ||||
CVE-2024-26993 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2024-12-23 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: fs: sysfs: Fix reference leak in sysfs_break_active_protection() The sysfs_break_active_protection() routine has an obvious reference leak in its error path. If the call to kernfs_find_and_get() fails then kn will be NULL, so the companion sysfs_unbreak_active_protection() routine won't get called (and would only cause an access violation by trying to dereference kn->parent if it was called). As a result, the reference to kobj acquired at the start of the function will never be released. Fix the leak by adding an explicit kobject_put() call when kn is NULL. | ||||
CVE-2024-26989 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2024-12-23 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: arm64: hibernate: Fix level3 translation fault in swsusp_save() On arm64 machines, swsusp_save() faults if it attempts to access MEMBLOCK_NOMAP memory ranges. This can be reproduced in QEMU using UEFI when booting with rodata=off debug_pagealloc=off and CONFIG_KFENCE=n: Unable to handle kernel paging request at virtual address ffffff8000000000 Mem abort info: ESR = 0x0000000096000007 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x07: level 3 translation fault Data abort info: ISV = 0, ISS = 0x00000007, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 swapper pgtable: 4k pages, 39-bit VAs, pgdp=00000000eeb0b000 [ffffff8000000000] pgd=180000217fff9803, p4d=180000217fff9803, pud=180000217fff9803, pmd=180000217fff8803, pte=0000000000000000 Internal error: Oops: 0000000096000007 [#1] SMP Internal error: Oops: 0000000096000007 [#1] SMP Modules linked in: xt_multiport ipt_REJECT nf_reject_ipv4 xt_conntrack nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 libcrc32c iptable_filter bpfilter rfkill at803x snd_hda_codec_hdmi snd_hda_intel snd_intel_dspcfg dwmac_generic stmmac_platform snd_hda_codec stmmac joydev pcs_xpcs snd_hda_core phylink ppdev lp parport ramoops reed_solomon ip_tables x_tables nls_iso8859_1 vfat multipath linear amdgpu amdxcp drm_exec gpu_sched drm_buddy hid_generic usbhid hid radeon video drm_suballoc_helper drm_ttm_helper ttm i2c_algo_bit drm_display_helper cec drm_kms_helper drm CPU: 0 PID: 3663 Comm: systemd-sleep Not tainted 6.6.2+ #76 Source Version: 4e22ed63a0a48e7a7cff9b98b7806d8d4add7dc0 Hardware name: Greatwall GW-XXXXXX-XXX/GW-XXXXXX-XXX, BIOS KunLun BIOS V4.0 01/19/2021 pstate: 600003c5 (nZCv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : swsusp_save+0x280/0x538 lr : swsusp_save+0x280/0x538 sp : ffffffa034a3fa40 x29: ffffffa034a3fa40 x28: ffffff8000001000 x27: 0000000000000000 x26: ffffff8001400000 x25: ffffffc08113e248 x24: 0000000000000000 x23: 0000000000080000 x22: ffffffc08113e280 x21: 00000000000c69f2 x20: ffffff8000000000 x19: ffffffc081ae2500 x18: 0000000000000000 x17: 6666662074736420 x16: 3030303030303030 x15: 3038666666666666 x14: 0000000000000b69 x13: ffffff9f89088530 x12: 00000000ffffffea x11: 00000000ffff7fff x10: 00000000ffff7fff x9 : ffffffc08193f0d0 x8 : 00000000000bffe8 x7 : c0000000ffff7fff x6 : 0000000000000001 x5 : ffffffa0fff09dc8 x4 : 0000000000000000 x3 : 0000000000000027 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 000000000000004e Call trace: swsusp_save+0x280/0x538 swsusp_arch_suspend+0x148/0x190 hibernation_snapshot+0x240/0x39c hibernate+0xc4/0x378 state_store+0xf0/0x10c kobj_attr_store+0x14/0x24 The reason is swsusp_save() -> copy_data_pages() -> page_is_saveable() -> kernel_page_present() assuming that a page is always present when can_set_direct_map() is false (all of rodata_full, debug_pagealloc_enabled() and arm64_kfence_can_set_direct_map() false), irrespective of the MEMBLOCK_NOMAP ranges. Such MEMBLOCK_NOMAP regions should not be saved during hibernation. This problem was introduced by changes to the pfn_valid() logic in commit a7d9f306ba70 ("arm64: drop pfn_valid_within() and simplify pfn_valid()"). Similar to other architectures, drop the !can_set_direct_map() check in kernel_page_present() so that page_is_savable() skips such pages. [catalin.marinas@arm.com: rework commit message] | ||||
CVE-2024-26981 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2024-12-23 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix OOB in nilfs_set_de_type The size of the nilfs_type_by_mode array in the fs/nilfs2/dir.c file is defined as "S_IFMT >> S_SHIFT", but the nilfs_set_de_type() function, which uses this array, specifies the index to read from the array in the same way as "(mode & S_IFMT) >> S_SHIFT". static void nilfs_set_de_type(struct nilfs_dir_entry *de, struct inode *inode) { umode_t mode = inode->i_mode; de->file_type = nilfs_type_by_mode[(mode & S_IFMT)>>S_SHIFT]; // oob } However, when the index is determined this way, an out-of-bounds (OOB) error occurs by referring to an index that is 1 larger than the array size when the condition "mode & S_IFMT == S_IFMT" is satisfied. Therefore, a patch to resize the nilfs_type_by_mode array should be applied to prevent OOB errors. | ||||
CVE-2024-27003 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2024-12-23 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: clk: Get runtime PM before walking tree for clk_summary Similar to the previous commit, we should make sure that all devices are runtime resumed before printing the clk_summary through debugfs. Failure to do so would result in a deadlock if the thread is resuming a device to print clk state and that device is also runtime resuming in another thread, e.g the screen is turning on and the display driver is starting up. We remove the calls to clk_pm_runtime_{get,put}() in this path because they're superfluous now that we know the devices are runtime resumed. This also squashes a bug where the return value of clk_pm_runtime_get() wasn't checked, leading to an RPM count underflow on error paths. | ||||
CVE-2024-9290 | 2024-12-23 | 9.8 Critical | ||
The Super Backup & Clone - Migrate for WordPress plugin for WordPress is vulnerable to arbitrary file uploads due to missing file type validation and a missing capability check on the ibk_restore_migrate_check() function in all versions up to, and including, 2.3.3. This makes it possible for unauthenticated attackers to upload arbitrary files on the affected site's server which may make remote code execution possible. | ||||
CVE-2024-10783 | 2024-12-23 | 8.1 High | ||
The MainWP Child – Securely Connects to the MainWP Dashboard to Manage Multiple Sites plugin for WordPress is vulnerable to privilege escalation due to a missing authorization checks on the register_site function in all versions up to, and including, 5.2 when a site is left in an unconfigured state. This makes it possible for unauthenticated attackers to log in as an administrator on instances where MainWP Child is not yet connected to the MainWP Dashboard. IMPORTANT: this only affects sites who have MainWP Child installed and have not yet connected to the MainWP Dashboard, and do not have the unique security ID feature enabled. Sites already connected to the MainWP Dashboard plugin and do not have the unique security ID feature enabled, are NOT affected and not required to upgrade. Please note 5.2.1 contains a partial patch, though we consider 5.3 to be the complete patch. | ||||
CVE-2024-52057 | 2024-12-23 | N/A | ||
Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') vulnerability in RTI Connext Professional (Queuing Service) allows SQL Injection.This issue affects Connext Professional: from 7.0.0 before 7.3.0, from 6.1.0 before 6.1.2.17, from 6.0.0 before 6.0.*, from 5.2.0 before 5.3.*. |