Search Results (323529 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68194 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: imon: make send_packet() more robust syzbot is reporting that imon has three problems which result in hung tasks due to forever holding device lock [1]. First problem is that when usb_rx_callback_intf0() once got -EPROTO error after ictx->dev_present_intf0 became true, usb_rx_callback_intf0() resubmits urb after printk(), and resubmitted urb causes usb_rx_callback_intf0() to again get -EPROTO error. This results in printk() flooding (RCU stalls). Alan Stern commented [2] that In theory it's okay to resubmit _if_ the driver has a robust error-recovery scheme (such as giving up after some fixed limit on the number of errors or after some fixed time has elapsed, perhaps with a time delay to prevent a flood of errors). Most drivers don't bother to do this; they simply give up right away. This makes them more vulnerable to short-term noise interference during USB transfers, but in reality such interference is quite rare. There's nothing really wrong with giving up right away. but imon has a poor error-recovery scheme which just retries forever; this behavior should be fixed. Since I'm not sure whether it is safe for imon users to give up upon any error code, this patch takes care of only union of error codes chosen from modules in drivers/media/rc/ directory which handle -EPROTO error (i.e. ir_toy, mceusb and igorplugusb). Second problem is that when usb_rx_callback_intf0() once got -EPROTO error before ictx->dev_present_intf0 becomes true, usb_rx_callback_intf0() always resubmits urb due to commit 8791d63af0cf ("[media] imon: don't wedge hardware after early callbacks"). Move the ictx->dev_present_intf0 test introduced by commit 6f6b90c9231a ("[media] imon: don't parse scancodes until intf configured") to immediately before imon_incoming_packet(), or the first problem explained above happens without printk() flooding (i.e. hung task). Third problem is that when usb_rx_callback_intf0() is not called for some reason (e.g. flaky hardware; the reproducer for this problem sometimes prevents usb_rx_callback_intf0() from being called), wait_for_completion_interruptible() in send_packet() never returns (i.e. hung task). As a workaround for such situation, change send_packet() to wait for completion with timeout of 10 seconds.
CVE-2025-68182 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: fix potential use after free in iwl_mld_remove_link() This code frees "link" by calling kfree_rcu(link, rcu_head) and then it dereferences "link" to get the "link->fw_id". Save the "link->fw_id" first to avoid a potential use after free.
CVE-2025-68187 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: net: mdio: Check regmap pointer returned by device_node_to_regmap() The call to device_node_to_regmap() in airoha_mdio_probe() can return an ERR_PTR() if regmap initialization fails. Currently, the driver stores the pointer without validation, which could lead to a crash if it is later dereferenced. Add an IS_ERR() check and return the corresponding error code to make the probe path more robust.
CVE-2025-68188 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tcp: use dst_dev_rcu() in tcp_fastopen_active_disable_ofo_check() Use RCU to avoid a pair of atomic operations and a potential UAF on dst_dev()->flags.
CVE-2025-68195 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Add missing terminator for zen5_rdseed_microcode Running x86_match_min_microcode_rev() on a Zen5 CPU trips up KASAN for an out of bounds access.
CVE-2025-68199 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: codetag: debug: handle existing CODETAG_EMPTY in mark_objexts_empty for slabobj_ext When alloc_slab_obj_exts() fails and then later succeeds in allocating a slab extension vector, it calls handle_failed_objexts_alloc() to mark all objects in the vector as empty. As a result all objects in this slab (slabA) will have their extensions set to CODETAG_EMPTY. Later on if this slabA is used to allocate a slabobj_ext vector for another slab (slabB), we end up with the slabB->obj_exts pointing to a slabobj_ext vector that itself has a non-NULL slabobj_ext equal to CODETAG_EMPTY. When slabB gets freed, free_slab_obj_exts() is called to free slabB->obj_exts vector. free_slab_obj_exts() calls mark_objexts_empty(slabB->obj_exts) which will generate a warning because it expects slabobj_ext vectors to have a NULL obj_ext, not CODETAG_EMPTY. Modify mark_objexts_empty() to skip the warning and setting the obj_ext value if it's already set to CODETAG_EMPTY. To quickly detect this WARN, I modified the code from WARN_ON(slab_exts[offs].ref.ct) to BUG_ON(slab_exts[offs].ref.ct == 1); We then obtained this message: [21630.898561] ------------[ cut here ]------------ [21630.898596] kernel BUG at mm/slub.c:2050! [21630.898611] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP [21630.900372] Modules linked in: squashfs isofs vfio_iommu_type1 vhost_vsock vfio vhost_net vmw_vsock_virtio_transport_common vhost tap vhost_iotlb iommufd vsock binfmt_misc nfsv3 nfs_acl nfs lockd grace netfs tls rds dns_resolver tun brd overlay ntfs3 exfat btrfs blake2b_generic xor xor_neon raid6_pq loop sctp ip6_udp_tunnel udp_tunnel nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables rfkill ip_set sunrpc vfat fat joydev sg sch_fq_codel nfnetlink virtio_gpu sr_mod cdrom drm_client_lib virtio_dma_buf drm_shmem_helper drm_kms_helper drm ghash_ce backlight virtio_net virtio_blk virtio_scsi net_failover virtio_console failover virtio_mmio dm_mirror dm_region_hash dm_log dm_multipath dm_mod fuse i2c_dev virtio_pci virtio_pci_legacy_dev virtio_pci_modern_dev virtio virtio_ring autofs4 aes_neon_bs aes_ce_blk [last unloaded: hwpoison_inject] [21630.909177] CPU: 3 UID: 0 PID: 3787 Comm: kylin-process-m Kdump: loaded Tainted: G        W           6.18.0-rc1+ #74 PREEMPT(voluntary) [21630.910495] Tainted: [W]=WARN [21630.910867] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 [21630.911625] pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [21630.912392] pc : __free_slab+0x228/0x250 [21630.912868] lr : __free_slab+0x18c/0x250[21630.913334] sp : ffff8000a02f73e0 [21630.913830] x29: ffff8000a02f73e0 x28: fffffdffc43fc800 x27: ffff0000c0011c40 [21630.914677] x26: ffff0000c000cac0 x25: ffff00010fe5e5f0 x24: ffff000102199b40 [21630.915469] x23: 0000000000000003 x22: 0000000000000003 x21: ffff0000c0011c40 [21630.916259] x20: fffffdffc4086600 x19: fffffdffc43fc800 x18: 0000000000000000 [21630.917048] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 [21630.917837] x14: 0000000000000000 x13: 0000000000000000 x12: ffff70001405ee66 [21630.918640] x11: 1ffff0001405ee65 x10: ffff70001405ee65 x9 : ffff800080a295dc [21630.919442] x8 : ffff8000a02f7330 x7 : 0000000000000000 x6 : 0000000000003000 [21630.920232] x5 : 0000000024924925 x4 : 0000000000000001 x3 : 0000000000000007 [21630.921021] x2 : 0000000000001b40 x1 : 000000000000001f x0 : 0000000000000001 [21630.921810] Call trace: [21630.922130]  __free_slab+0x228/0x250 (P) [21630.922669]  free_slab+0x38/0x118 [21630.923079]  free_to_partial_list+0x1d4/0x340 [21630.923591]  __slab_free+0x24c/0x348 [21630.924024]  ___cache_free+0xf0/0x110 [21630.924468]  qlist_free_all+0x78/0x130 [21630.924922]  kasan_quarantine_reduce+0x11 ---truncated---
CVE-2025-68200 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Add bpf_prog_run_data_pointers() syzbot found that cls_bpf_classify() is able to change tc_skb_cb(skb)->drop_reason triggering a warning in sk_skb_reason_drop(). WARNING: CPU: 0 PID: 5965 at net/core/skbuff.c:1192 __sk_skb_reason_drop net/core/skbuff.c:1189 [inline] WARNING: CPU: 0 PID: 5965 at net/core/skbuff.c:1192 sk_skb_reason_drop+0x76/0x170 net/core/skbuff.c:1214 struct tc_skb_cb has been added in commit ec624fe740b4 ("net/sched: Extend qdisc control block with tc control block"), which added a wrong interaction with db58ba459202 ("bpf: wire in data and data_end for cls_act_bpf"). drop_reason was added later. Add bpf_prog_run_data_pointers() helper to save/restore the net_sched storage colliding with BPF data_meta/data_end.
CVE-2025-68167 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gpiolib: fix invalid pointer access in debugfs If the memory allocation in gpiolib_seq_start() fails, the s->private field remains uninitialized and is later dereferenced without checking in gpiolib_seq_stop(). Initialize s->private to NULL before calling kzalloc() and check it before dereferencing it.
CVE-2025-68168 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: jfs: fix uninitialized waitqueue in transaction manager The transaction manager initialization in txInit() was not properly initializing TxBlock[0].waitor waitqueue, causing a crash when txEnd(0) is called on read-only filesystems. When a filesystem is mounted read-only, txBegin() returns tid=0 to indicate no transaction. However, txEnd(0) still gets called and tries to access TxBlock[0].waitor via tid_to_tblock(0), but this waitqueue was never initialized because the initialization loop started at index 1 instead of 0. This causes a 'non-static key' lockdep warning and system crash: INFO: trying to register non-static key in txEnd Fix by ensuring all transaction blocks including TxBlock[0] have their waitqueues properly initialized during txInit().
CVE-2025-68169 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netpoll: Fix deadlock in memory allocation under spinlock Fix a AA deadlock in refill_skbs() where memory allocation while holding skb_pool->lock can trigger a recursive lock acquisition attempt. The deadlock scenario occurs when the system is under severe memory pressure: 1. refill_skbs() acquires skb_pool->lock (spinlock) 2. alloc_skb() is called while holding the lock 3. Memory allocator fails and calls slab_out_of_memory() 4. This triggers printk() for the OOM warning 5. The console output path calls netpoll_send_udp() 6. netpoll_send_udp() attempts to acquire the same skb_pool->lock 7. Deadlock: the lock is already held by the same CPU Call stack: refill_skbs() spin_lock_irqsave(&skb_pool->lock) <- lock acquired __alloc_skb() kmem_cache_alloc_node_noprof() slab_out_of_memory() printk() console_flush_all() netpoll_send_udp() skb_dequeue() spin_lock_irqsave(&skb_pool->lock) <- deadlock attempt This bug was exposed by commit 248f6571fd4c51 ("netpoll: Optimize skb refilling on critical path") which removed refill_skbs() from the critical path (where nested printk was being deferred), letting nested printk being called from inside refill_skbs() Refactor refill_skbs() to never allocate memory while holding the spinlock. Another possible solution to fix this problem is protecting the refill_skbs() from nested printks, basically calling printk_deferred_{enter,exit}() in refill_skbs(), then, any nested pr_warn() would be deferred. I prefer this approach, given I _think_ it might be a good idea to move the alloc_skb() from GFP_ATOMIC to GFP_KERNEL in the future, so, having the alloc_skb() outside of the lock will be necessary step. There is a possible TOCTOU issue when checking for the pool length, and queueing the new allocated skb, but, this is not an issue, given that an extra SKB in the pool is harmless and it will be eventually used.
CVE-2025-68170 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: Do not kfree() devres managed rdev Since the allocation of the drivers main structure was changed to devm_drm_dev_alloc() rdev is managed by devres and we shouldn't be calling kfree() on it. This fixes things exploding if the driver probe fails and devres cleans up the rdev after we already free'd it. (cherry picked from commit 16c0681617b8a045773d4d87b6140002fa75b03b)
CVE-2025-68177 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: cpufreq/longhaul: handle NULL policy in longhaul_exit longhaul_exit() was calling cpufreq_cpu_get(0) without checking for a NULL policy pointer. On some systems, this could lead to a NULL dereference and a kernel warning or panic. This patch adds a check using unlikely() and returns early if the policy is NULL. Bugzilla: #219962
CVE-2025-68171 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Ensure XFD state on signal delivery Sean reported [1] the following splat when running KVM tests: WARNING: CPU: 232 PID: 15391 at xfd_validate_state+0x65/0x70 Call Trace: <TASK> fpu__clear_user_states+0x9c/0x100 arch_do_signal_or_restart+0x142/0x210 exit_to_user_mode_loop+0x55/0x100 do_syscall_64+0x205/0x2c0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Chao further identified [2] a reproducible scenario involving signal delivery: a non-AMX task is preempted by an AMX-enabled task which modifies the XFD MSR. When the non-AMX task resumes and reloads XSTATE with init values, a warning is triggered due to a mismatch between fpstate::xfd and the CPU's current XFD state. fpu__clear_user_states() does not currently re-synchronize the XFD state after such preemption. Invoke xfd_update_state() which detects and corrects the mismatch if there is a dynamic feature. This also benefits the sigreturn path, as fpu__restore_sig() may call fpu__clear_user_states() when the sigframe is inaccessible. [ dhansen: minor changelog munging ]
CVE-2025-68172 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: crypto: aspeed - fix double free caused by devm The clock obtained via devm_clk_get_enabled() is automatically managed by devres and will be disabled and freed on driver detach. Manually calling clk_disable_unprepare() in error path and remove function causes double free. Remove the manual clock cleanup in both aspeed_acry_probe()'s error path and aspeed_acry_remove().
CVE-2025-68179 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390: Disable ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP As reported by Luiz Capitulino enabling HVO on s390 leads to reproducible crashes. The problem is that kernel page tables are modified without flushing corresponding TLB entries. Even if it looks like the empty flush_tlb_all() implementation on s390 is the problem, it is actually a different problem: on s390 it is not allowed to replace an active/valid page table entry with another valid page table entry without the detour over an invalid entry. A direct replacement may lead to random crashes and/or data corruption. In order to invalidate an entry special instructions have to be used (e.g. ipte or idte). Alternatively there are also special instructions available which allow to replace a valid entry with a different valid entry (e.g. crdte or cspg). Given that the HVO code currently does not provide the hooks to allow for an implementation which is compliant with the s390 architecture requirements, disable ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP again, which is basically a revert of the original patch which enabled it.
CVE-2025-68181 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: Remove calls to drm_put_dev() Since the allocation of the drivers main structure was changed to devm_drm_dev_alloc() drm_put_dev()'ing to trigger it to be free'd should be done by devres. However, drm_put_dev() is still in the probe error and device remove paths. When the driver fails to probe warnings like the following are shown because devres is trying to drm_put_dev() after the driver already did it. [ 5.642230] radeon 0000:01:05.0: probe with driver radeon failed with error -22 [ 5.649605] ------------[ cut here ]------------ [ 5.649607] refcount_t: underflow; use-after-free. [ 5.649620] WARNING: CPU: 0 PID: 357 at lib/refcount.c:28 refcount_warn_saturate+0xbe/0x110 (cherry picked from commit 3eb8c0b4c091da0a623ade0d3ee7aa4a93df1ea4)
CVE-2025-68183 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ima: don't clear IMA_DIGSIG flag when setting or removing non-IMA xattr Currently when both IMA and EVM are in fix mode, the IMA signature will be reset to IMA hash if a program first stores IMA signature in security.ima and then writes/removes some other security xattr for the file. For example, on Fedora, after booting the kernel with "ima_appraise=fix evm=fix ima_policy=appraise_tcb" and installing rpm-plugin-ima, installing/reinstalling a package will not make good reference IMA signature generated. Instead IMA hash is generated, # getfattr -m - -d -e hex /usr/bin/bash # file: usr/bin/bash security.ima=0x0404... This happens because when setting security.selinux, the IMA_DIGSIG flag that had been set early was cleared. As a result, IMA hash is generated when the file is closed. Similarly, IMA signature can be cleared on file close after removing security xattr like security.evm or setting/removing ACL. Prevent replacing the IMA file signature with a file hash, by preventing the IMA_DIGSIG flag from being reset. Here's a minimal C reproducer which sets security.selinux as the last step which can also replaced by removing security.evm or setting ACL, #include <stdio.h> #include <sys/xattr.h> #include <fcntl.h> #include <unistd.h> #include <string.h> #include <stdlib.h> int main() { const char* file_path = "/usr/sbin/test_binary"; const char* hex_string = "030204d33204490066306402304"; int length = strlen(hex_string); char* ima_attr_value; int fd; fd = open(file_path, O_WRONLY|O_CREAT|O_EXCL, 0644); if (fd == -1) { perror("Error opening file"); return 1; } ima_attr_value = (char*)malloc(length / 2 ); for (int i = 0, j = 0; i < length; i += 2, j++) { sscanf(hex_string + i, "%2hhx", &ima_attr_value[j]); } if (fsetxattr(fd, "security.ima", ima_attr_value, length/2, 0) == -1) { perror("Error setting extended attribute"); close(fd); return 1; } const char* selinux_value= "system_u:object_r:bin_t:s0"; if (fsetxattr(fd, "security.selinux", selinux_value, strlen(selinux_value), 0) == -1) { perror("Error setting extended attribute"); close(fd); return 1; } close(fd); return 0; }
CVE-2025-68184 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Disable AFBC support on Mediatek DRM driver Commit c410fa9b07c3 ("drm/mediatek: Add AFBC support to Mediatek DRM driver") added AFBC support to Mediatek DRM and enabled the 32x8/split/sparse modifier. However, this is currently broken on Mediatek MT8188 (Genio 700 EVK platform); tested using upstream Kernel and Mesa (v25.2.1), AFBC is used by default since Mesa v25.0. Kernel trace reports vblank timeouts constantly, and the render is garbled: ``` [CRTC:62:crtc-0] vblank wait timed out WARNING: CPU: 7 PID: 70 at drivers/gpu/drm/drm_atomic_helper.c:1835 drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c [...] Hardware name: MediaTek Genio-700 EVK (DT) Workqueue: events_unbound commit_work pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c lr : drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c sp : ffff80008337bca0 x29: ffff80008337bcd0 x28: 0000000000000061 x27: 0000000000000000 x26: 0000000000000001 x25: 0000000000000000 x24: ffff0000c9dcc000 x23: 0000000000000001 x22: 0000000000000000 x21: ffff0000c66f2f80 x20: ffff0000c0d7d880 x19: 0000000000000000 x18: 000000000000000a x17: 000000040044ffff x16: 005000f2b5503510 x15: 0000000000000000 x14: 0000000000000000 x13: 74756f2064656d69 x12: 742074696177206b x11: 0000000000000058 x10: 0000000000000018 x9 : ffff800082396a70 x8 : 0000000000057fa8 x7 : 0000000000000cce x6 : ffff8000823eea70 x5 : ffff0001fef5f408 x4 : ffff80017ccee000 x3 : ffff0000c12cb480 x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000c12cb480 Call trace: drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c (P) drm_atomic_helper_commit_tail_rpm+0x64/0x80 commit_tail+0xa4/0x1a4 commit_work+0x14/0x20 process_one_work+0x150/0x290 worker_thread+0x2d0/0x3ec kthread+0x12c/0x210 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- ``` Until this gets fixed upstream, disable AFBC support on this platform, as it's currently broken with upstream Mesa.
CVE-2025-68185 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: nfs4_setup_readdir(): insufficient locking for ->d_parent->d_inode dereferencing Theoretically it's an oopsable race, but I don't believe one can manage to hit it on real hardware; might become doable on a KVM, but it still won't be easy to attack. Anyway, it's easy to deal with - since xdr_encode_hyper() is just a call of put_unaligned_be64(), we can put that under ->d_lock and be done with that.
CVE-2025-68186 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Do not warn in ring_buffer_map_get_reader() when reader catches up The function ring_buffer_map_get_reader() is a bit more strict than the other get reader functions, and except for certain situations the rb_get_reader_page() should not return NULL. If it does, it triggers a warning. This warning was triggering but after looking at why, it was because another acceptable situation was happening and it wasn't checked for. If the reader catches up to the writer and there's still data to be read on the reader page, then the rb_get_reader_page() will return NULL as there's no new page to get. In this situation, the reader page should not be updated and no warning should trigger.