| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: imon: make send_packet() more robust
syzbot is reporting that imon has three problems which result in
hung tasks due to forever holding device lock [1].
First problem is that when usb_rx_callback_intf0() once got -EPROTO error
after ictx->dev_present_intf0 became true, usb_rx_callback_intf0()
resubmits urb after printk(), and resubmitted urb causes
usb_rx_callback_intf0() to again get -EPROTO error. This results in
printk() flooding (RCU stalls).
Alan Stern commented [2] that
In theory it's okay to resubmit _if_ the driver has a robust
error-recovery scheme (such as giving up after some fixed limit on the
number of errors or after some fixed time has elapsed, perhaps with a
time delay to prevent a flood of errors). Most drivers don't bother to
do this; they simply give up right away. This makes them more
vulnerable to short-term noise interference during USB transfers, but in
reality such interference is quite rare. There's nothing really wrong
with giving up right away.
but imon has a poor error-recovery scheme which just retries forever;
this behavior should be fixed.
Since I'm not sure whether it is safe for imon users to give up upon any
error code, this patch takes care of only union of error codes chosen from
modules in drivers/media/rc/ directory which handle -EPROTO error (i.e.
ir_toy, mceusb and igorplugusb).
Second problem is that when usb_rx_callback_intf0() once got -EPROTO error
before ictx->dev_present_intf0 becomes true, usb_rx_callback_intf0() always
resubmits urb due to commit 8791d63af0cf ("[media] imon: don't wedge
hardware after early callbacks"). Move the ictx->dev_present_intf0 test
introduced by commit 6f6b90c9231a ("[media] imon: don't parse scancodes
until intf configured") to immediately before imon_incoming_packet(), or
the first problem explained above happens without printk() flooding (i.e.
hung task).
Third problem is that when usb_rx_callback_intf0() is not called for some
reason (e.g. flaky hardware; the reproducer for this problem sometimes
prevents usb_rx_callback_intf0() from being called),
wait_for_completion_interruptible() in send_packet() never returns (i.e.
hung task). As a workaround for such situation, change send_packet() to
wait for completion with timeout of 10 seconds. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: fix potential use after free in iwl_mld_remove_link()
This code frees "link" by calling kfree_rcu(link, rcu_head) and then it
dereferences "link" to get the "link->fw_id". Save the "link->fw_id"
first to avoid a potential use after free. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mdio: Check regmap pointer returned by device_node_to_regmap()
The call to device_node_to_regmap() in airoha_mdio_probe() can return
an ERR_PTR() if regmap initialization fails. Currently, the driver
stores the pointer without validation, which could lead to a crash
if it is later dereferenced.
Add an IS_ERR() check and return the corresponding error code to make
the probe path more robust. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: use dst_dev_rcu() in tcp_fastopen_active_disable_ofo_check()
Use RCU to avoid a pair of atomic operations and a potential
UAF on dst_dev()->flags. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/CPU/AMD: Add missing terminator for zen5_rdseed_microcode
Running x86_match_min_microcode_rev() on a Zen5 CPU trips up KASAN for an out
of bounds access. |
| In the Linux kernel, the following vulnerability has been resolved:
codetag: debug: handle existing CODETAG_EMPTY in mark_objexts_empty for slabobj_ext
When alloc_slab_obj_exts() fails and then later succeeds in allocating a
slab extension vector, it calls handle_failed_objexts_alloc() to mark all
objects in the vector as empty. As a result all objects in this slab
(slabA) will have their extensions set to CODETAG_EMPTY.
Later on if this slabA is used to allocate a slabobj_ext vector for
another slab (slabB), we end up with the slabB->obj_exts pointing to a
slabobj_ext vector that itself has a non-NULL slabobj_ext equal to
CODETAG_EMPTY. When slabB gets freed, free_slab_obj_exts() is called to
free slabB->obj_exts vector.
free_slab_obj_exts() calls mark_objexts_empty(slabB->obj_exts) which will
generate a warning because it expects slabobj_ext vectors to have a NULL
obj_ext, not CODETAG_EMPTY.
Modify mark_objexts_empty() to skip the warning and setting the obj_ext
value if it's already set to CODETAG_EMPTY.
To quickly detect this WARN, I modified the code from
WARN_ON(slab_exts[offs].ref.ct) to BUG_ON(slab_exts[offs].ref.ct == 1);
We then obtained this message:
[21630.898561] ------------[ cut here ]------------
[21630.898596] kernel BUG at mm/slub.c:2050!
[21630.898611] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
[21630.900372] Modules linked in: squashfs isofs vfio_iommu_type1
vhost_vsock vfio vhost_net vmw_vsock_virtio_transport_common vhost tap
vhost_iotlb iommufd vsock binfmt_misc nfsv3 nfs_acl nfs lockd grace
netfs tls rds dns_resolver tun brd overlay ntfs3 exfat btrfs
blake2b_generic xor xor_neon raid6_pq loop sctp ip6_udp_tunnel
udp_tunnel nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib
nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct
nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4
nf_tables rfkill ip_set sunrpc vfat fat joydev sg sch_fq_codel nfnetlink
virtio_gpu sr_mod cdrom drm_client_lib virtio_dma_buf drm_shmem_helper
drm_kms_helper drm ghash_ce backlight virtio_net virtio_blk virtio_scsi
net_failover virtio_console failover virtio_mmio dm_mirror
dm_region_hash dm_log dm_multipath dm_mod fuse i2c_dev virtio_pci
virtio_pci_legacy_dev virtio_pci_modern_dev virtio virtio_ring autofs4
aes_neon_bs aes_ce_blk [last unloaded: hwpoison_inject]
[21630.909177] CPU: 3 UID: 0 PID: 3787 Comm: kylin-process-m Kdump:
loaded Tainted: G W 6.18.0-rc1+ #74 PREEMPT(voluntary)
[21630.910495] Tainted: [W]=WARN
[21630.910867] Hardware name: QEMU KVM Virtual Machine, BIOS unknown
2/2/2022
[21630.911625] pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS
BTYPE=--)
[21630.912392] pc : __free_slab+0x228/0x250
[21630.912868] lr : __free_slab+0x18c/0x250[21630.913334] sp :
ffff8000a02f73e0
[21630.913830] x29: ffff8000a02f73e0 x28: fffffdffc43fc800 x27:
ffff0000c0011c40
[21630.914677] x26: ffff0000c000cac0 x25: ffff00010fe5e5f0 x24:
ffff000102199b40
[21630.915469] x23: 0000000000000003 x22: 0000000000000003 x21:
ffff0000c0011c40
[21630.916259] x20: fffffdffc4086600 x19: fffffdffc43fc800 x18:
0000000000000000
[21630.917048] x17: 0000000000000000 x16: 0000000000000000 x15:
0000000000000000
[21630.917837] x14: 0000000000000000 x13: 0000000000000000 x12:
ffff70001405ee66
[21630.918640] x11: 1ffff0001405ee65 x10: ffff70001405ee65 x9 :
ffff800080a295dc
[21630.919442] x8 : ffff8000a02f7330 x7 : 0000000000000000 x6 :
0000000000003000
[21630.920232] x5 : 0000000024924925 x4 : 0000000000000001 x3 :
0000000000000007
[21630.921021] x2 : 0000000000001b40 x1 : 000000000000001f x0 :
0000000000000001
[21630.921810] Call trace:
[21630.922130] __free_slab+0x228/0x250 (P)
[21630.922669] free_slab+0x38/0x118
[21630.923079] free_to_partial_list+0x1d4/0x340
[21630.923591] __slab_free+0x24c/0x348
[21630.924024] ___cache_free+0xf0/0x110
[21630.924468] qlist_free_all+0x78/0x130
[21630.924922] kasan_quarantine_reduce+0x11
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Add bpf_prog_run_data_pointers()
syzbot found that cls_bpf_classify() is able to change
tc_skb_cb(skb)->drop_reason triggering a warning in sk_skb_reason_drop().
WARNING: CPU: 0 PID: 5965 at net/core/skbuff.c:1192 __sk_skb_reason_drop net/core/skbuff.c:1189 [inline]
WARNING: CPU: 0 PID: 5965 at net/core/skbuff.c:1192 sk_skb_reason_drop+0x76/0x170 net/core/skbuff.c:1214
struct tc_skb_cb has been added in commit ec624fe740b4 ("net/sched:
Extend qdisc control block with tc control block"), which added a wrong
interaction with db58ba459202 ("bpf: wire in data and data_end for
cls_act_bpf").
drop_reason was added later.
Add bpf_prog_run_data_pointers() helper to save/restore the net_sched
storage colliding with BPF data_meta/data_end. |
| In the Linux kernel, the following vulnerability has been resolved:
gpiolib: fix invalid pointer access in debugfs
If the memory allocation in gpiolib_seq_start() fails, the s->private
field remains uninitialized and is later dereferenced without checking
in gpiolib_seq_stop(). Initialize s->private to NULL before calling
kzalloc() and check it before dereferencing it. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: fix uninitialized waitqueue in transaction manager
The transaction manager initialization in txInit() was not properly
initializing TxBlock[0].waitor waitqueue, causing a crash when
txEnd(0) is called on read-only filesystems.
When a filesystem is mounted read-only, txBegin() returns tid=0 to
indicate no transaction. However, txEnd(0) still gets called and
tries to access TxBlock[0].waitor via tid_to_tblock(0), but this
waitqueue was never initialized because the initialization loop
started at index 1 instead of 0.
This causes a 'non-static key' lockdep warning and system crash:
INFO: trying to register non-static key in txEnd
Fix by ensuring all transaction blocks including TxBlock[0] have
their waitqueues properly initialized during txInit(). |
| In the Linux kernel, the following vulnerability has been resolved:
netpoll: Fix deadlock in memory allocation under spinlock
Fix a AA deadlock in refill_skbs() where memory allocation while holding
skb_pool->lock can trigger a recursive lock acquisition attempt.
The deadlock scenario occurs when the system is under severe memory
pressure:
1. refill_skbs() acquires skb_pool->lock (spinlock)
2. alloc_skb() is called while holding the lock
3. Memory allocator fails and calls slab_out_of_memory()
4. This triggers printk() for the OOM warning
5. The console output path calls netpoll_send_udp()
6. netpoll_send_udp() attempts to acquire the same skb_pool->lock
7. Deadlock: the lock is already held by the same CPU
Call stack:
refill_skbs()
spin_lock_irqsave(&skb_pool->lock) <- lock acquired
__alloc_skb()
kmem_cache_alloc_node_noprof()
slab_out_of_memory()
printk()
console_flush_all()
netpoll_send_udp()
skb_dequeue()
spin_lock_irqsave(&skb_pool->lock) <- deadlock attempt
This bug was exposed by commit 248f6571fd4c51 ("netpoll: Optimize skb
refilling on critical path") which removed refill_skbs() from the
critical path (where nested printk was being deferred), letting nested
printk being called from inside refill_skbs()
Refactor refill_skbs() to never allocate memory while holding
the spinlock.
Another possible solution to fix this problem is protecting the
refill_skbs() from nested printks, basically calling
printk_deferred_{enter,exit}() in refill_skbs(), then, any nested
pr_warn() would be deferred.
I prefer this approach, given I _think_ it might be a good idea to move
the alloc_skb() from GFP_ATOMIC to GFP_KERNEL in the future, so, having
the alloc_skb() outside of the lock will be necessary step.
There is a possible TOCTOU issue when checking for the pool length, and
queueing the new allocated skb, but, this is not an issue, given that
an extra SKB in the pool is harmless and it will be eventually used. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: Do not kfree() devres managed rdev
Since the allocation of the drivers main structure was changed to
devm_drm_dev_alloc() rdev is managed by devres and we shouldn't be calling
kfree() on it.
This fixes things exploding if the driver probe fails and devres cleans up
the rdev after we already free'd it.
(cherry picked from commit 16c0681617b8a045773d4d87b6140002fa75b03b) |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq/longhaul: handle NULL policy in longhaul_exit
longhaul_exit() was calling cpufreq_cpu_get(0) without checking
for a NULL policy pointer. On some systems, this could lead to a
NULL dereference and a kernel warning or panic.
This patch adds a check using unlikely() and returns early if the
policy is NULL.
Bugzilla: #219962 |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Ensure XFD state on signal delivery
Sean reported [1] the following splat when running KVM tests:
WARNING: CPU: 232 PID: 15391 at xfd_validate_state+0x65/0x70
Call Trace:
<TASK>
fpu__clear_user_states+0x9c/0x100
arch_do_signal_or_restart+0x142/0x210
exit_to_user_mode_loop+0x55/0x100
do_syscall_64+0x205/0x2c0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Chao further identified [2] a reproducible scenario involving signal
delivery: a non-AMX task is preempted by an AMX-enabled task which
modifies the XFD MSR.
When the non-AMX task resumes and reloads XSTATE with init values,
a warning is triggered due to a mismatch between fpstate::xfd and the
CPU's current XFD state. fpu__clear_user_states() does not currently
re-synchronize the XFD state after such preemption.
Invoke xfd_update_state() which detects and corrects the mismatch if
there is a dynamic feature.
This also benefits the sigreturn path, as fpu__restore_sig() may call
fpu__clear_user_states() when the sigframe is inaccessible.
[ dhansen: minor changelog munging ] |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: aspeed - fix double free caused by devm
The clock obtained via devm_clk_get_enabled() is automatically managed
by devres and will be disabled and freed on driver detach. Manually
calling clk_disable_unprepare() in error path and remove function
causes double free.
Remove the manual clock cleanup in both aspeed_acry_probe()'s error
path and aspeed_acry_remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
s390: Disable ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP
As reported by Luiz Capitulino enabling HVO on s390 leads to reproducible
crashes. The problem is that kernel page tables are modified without
flushing corresponding TLB entries.
Even if it looks like the empty flush_tlb_all() implementation on s390 is
the problem, it is actually a different problem: on s390 it is not allowed
to replace an active/valid page table entry with another valid page table
entry without the detour over an invalid entry. A direct replacement may
lead to random crashes and/or data corruption.
In order to invalidate an entry special instructions have to be used
(e.g. ipte or idte). Alternatively there are also special instructions
available which allow to replace a valid entry with a different valid
entry (e.g. crdte or cspg).
Given that the HVO code currently does not provide the hooks to allow for
an implementation which is compliant with the s390 architecture
requirements, disable ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP again, which is
basically a revert of the original patch which enabled it. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: Remove calls to drm_put_dev()
Since the allocation of the drivers main structure was changed to
devm_drm_dev_alloc() drm_put_dev()'ing to trigger it to be free'd
should be done by devres.
However, drm_put_dev() is still in the probe error and device remove
paths. When the driver fails to probe warnings like the following are
shown because devres is trying to drm_put_dev() after the driver
already did it.
[ 5.642230] radeon 0000:01:05.0: probe with driver radeon failed with error -22
[ 5.649605] ------------[ cut here ]------------
[ 5.649607] refcount_t: underflow; use-after-free.
[ 5.649620] WARNING: CPU: 0 PID: 357 at lib/refcount.c:28 refcount_warn_saturate+0xbe/0x110
(cherry picked from commit 3eb8c0b4c091da0a623ade0d3ee7aa4a93df1ea4) |
| In the Linux kernel, the following vulnerability has been resolved:
ima: don't clear IMA_DIGSIG flag when setting or removing non-IMA xattr
Currently when both IMA and EVM are in fix mode, the IMA signature will
be reset to IMA hash if a program first stores IMA signature in
security.ima and then writes/removes some other security xattr for the
file.
For example, on Fedora, after booting the kernel with "ima_appraise=fix
evm=fix ima_policy=appraise_tcb" and installing rpm-plugin-ima,
installing/reinstalling a package will not make good reference IMA
signature generated. Instead IMA hash is generated,
# getfattr -m - -d -e hex /usr/bin/bash
# file: usr/bin/bash
security.ima=0x0404...
This happens because when setting security.selinux, the IMA_DIGSIG flag
that had been set early was cleared. As a result, IMA hash is generated
when the file is closed.
Similarly, IMA signature can be cleared on file close after removing
security xattr like security.evm or setting/removing ACL.
Prevent replacing the IMA file signature with a file hash, by preventing
the IMA_DIGSIG flag from being reset.
Here's a minimal C reproducer which sets security.selinux as the last
step which can also replaced by removing security.evm or setting ACL,
#include <stdio.h>
#include <sys/xattr.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
int main() {
const char* file_path = "/usr/sbin/test_binary";
const char* hex_string = "030204d33204490066306402304";
int length = strlen(hex_string);
char* ima_attr_value;
int fd;
fd = open(file_path, O_WRONLY|O_CREAT|O_EXCL, 0644);
if (fd == -1) {
perror("Error opening file");
return 1;
}
ima_attr_value = (char*)malloc(length / 2 );
for (int i = 0, j = 0; i < length; i += 2, j++) {
sscanf(hex_string + i, "%2hhx", &ima_attr_value[j]);
}
if (fsetxattr(fd, "security.ima", ima_attr_value, length/2, 0) == -1) {
perror("Error setting extended attribute");
close(fd);
return 1;
}
const char* selinux_value= "system_u:object_r:bin_t:s0";
if (fsetxattr(fd, "security.selinux", selinux_value, strlen(selinux_value), 0) == -1) {
perror("Error setting extended attribute");
close(fd);
return 1;
}
close(fd);
return 0;
} |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Disable AFBC support on Mediatek DRM driver
Commit c410fa9b07c3 ("drm/mediatek: Add AFBC support to Mediatek DRM
driver") added AFBC support to Mediatek DRM and enabled the
32x8/split/sparse modifier.
However, this is currently broken on Mediatek MT8188 (Genio 700 EVK
platform); tested using upstream Kernel and Mesa (v25.2.1), AFBC is used by
default since Mesa v25.0.
Kernel trace reports vblank timeouts constantly, and the render is garbled:
```
[CRTC:62:crtc-0] vblank wait timed out
WARNING: CPU: 7 PID: 70 at drivers/gpu/drm/drm_atomic_helper.c:1835 drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c
[...]
Hardware name: MediaTek Genio-700 EVK (DT)
Workqueue: events_unbound commit_work
pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c
lr : drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c
sp : ffff80008337bca0
x29: ffff80008337bcd0 x28: 0000000000000061 x27: 0000000000000000
x26: 0000000000000001 x25: 0000000000000000 x24: ffff0000c9dcc000
x23: 0000000000000001 x22: 0000000000000000 x21: ffff0000c66f2f80
x20: ffff0000c0d7d880 x19: 0000000000000000 x18: 000000000000000a
x17: 000000040044ffff x16: 005000f2b5503510 x15: 0000000000000000
x14: 0000000000000000 x13: 74756f2064656d69 x12: 742074696177206b
x11: 0000000000000058 x10: 0000000000000018 x9 : ffff800082396a70
x8 : 0000000000057fa8 x7 : 0000000000000cce x6 : ffff8000823eea70
x5 : ffff0001fef5f408 x4 : ffff80017ccee000 x3 : ffff0000c12cb480
x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000c12cb480
Call trace:
drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c (P)
drm_atomic_helper_commit_tail_rpm+0x64/0x80
commit_tail+0xa4/0x1a4
commit_work+0x14/0x20
process_one_work+0x150/0x290
worker_thread+0x2d0/0x3ec
kthread+0x12c/0x210
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
```
Until this gets fixed upstream, disable AFBC support on this platform, as
it's currently broken with upstream Mesa. |
| In the Linux kernel, the following vulnerability has been resolved:
nfs4_setup_readdir(): insufficient locking for ->d_parent->d_inode dereferencing
Theoretically it's an oopsable race, but I don't believe one can manage
to hit it on real hardware; might become doable on a KVM, but it still
won't be easy to attack.
Anyway, it's easy to deal with - since xdr_encode_hyper() is just a call of
put_unaligned_be64(), we can put that under ->d_lock and be done with that. |
| In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Do not warn in ring_buffer_map_get_reader() when reader catches up
The function ring_buffer_map_get_reader() is a bit more strict than the
other get reader functions, and except for certain situations the
rb_get_reader_page() should not return NULL. If it does, it triggers a
warning.
This warning was triggering but after looking at why, it was because
another acceptable situation was happening and it wasn't checked for.
If the reader catches up to the writer and there's still data to be read
on the reader page, then the rb_get_reader_page() will return NULL as
there's no new page to get.
In this situation, the reader page should not be updated and no warning
should trigger. |