Total
277501 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-36920 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-01-15 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: scsi: mpi3mr: Avoid memcpy field-spanning write WARNING When the "storcli2 show" command is executed for eHBA-9600, mpi3mr driver prints this WARNING message: memcpy: detected field-spanning write (size 128) of single field "bsg_reply_buf->reply_buf" at drivers/scsi/mpi3mr/mpi3mr_app.c:1658 (size 1) WARNING: CPU: 0 PID: 12760 at drivers/scsi/mpi3mr/mpi3mr_app.c:1658 mpi3mr_bsg_request+0x6b12/0x7f10 [mpi3mr] The cause of the WARN is 128 bytes memcpy to the 1 byte size array "__u8 replay_buf[1]" in the struct mpi3mr_bsg_in_reply_buf. The array is intended to be a flexible length array, so the WARN is a false positive. To suppress the WARN, remove the constant number '1' from the array declaration and clarify that it has flexible length. Also, adjust the memory allocation size to match the change. | ||||
CVE-2024-56787 | 1 Linux | 1 Linux Kernel | 2025-01-15 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: soc: imx8m: Probe the SoC driver as platform driver With driver_async_probe=* on kernel command line, the following trace is produced because on i.MX8M Plus hardware because the soc-imx8m.c driver calls of_clk_get_by_name() which returns -EPROBE_DEFER because the clock driver is not yet probed. This was not detected during regular testing without driver_async_probe. Convert the SoC code to platform driver and instantiate a platform device in its current device_initcall() to probe the platform driver. Rework .soc_revision callback to always return valid error code and return SoC revision via parameter. This way, if anything in the .soc_revision callback return -EPROBE_DEFER, it gets propagated to .probe and the .probe will get retried later. " ------------[ cut here ]------------ WARNING: CPU: 1 PID: 1 at drivers/soc/imx/soc-imx8m.c:115 imx8mm_soc_revision+0xdc/0x180 CPU: 1 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.11.0-next-20240924-00002-g2062bb554dea #603 Hardware name: DH electronics i.MX8M Plus DHCOM Premium Developer Kit (3) (DT) pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : imx8mm_soc_revision+0xdc/0x180 lr : imx8mm_soc_revision+0xd0/0x180 sp : ffff8000821fbcc0 x29: ffff8000821fbce0 x28: 0000000000000000 x27: ffff800081810120 x26: ffff8000818a9970 x25: 0000000000000006 x24: 0000000000824311 x23: ffff8000817f42c8 x22: ffff0000df8be210 x21: fffffffffffffdfb x20: ffff800082780000 x19: 0000000000000001 x18: ffffffffffffffff x17: ffff800081fff418 x16: ffff8000823e1000 x15: ffff0000c03b65e8 x14: ffff0000c00051b0 x13: ffff800082790000 x12: 0000000000000801 x11: ffff80008278ffff x10: ffff80008209d3a6 x9 : ffff80008062e95c x8 : ffff8000821fb9a0 x7 : 0000000000000000 x6 : 00000000000080e3 x5 : ffff0000df8c03d8 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : fffffffffffffdfb x0 : fffffffffffffdfb Call trace: imx8mm_soc_revision+0xdc/0x180 imx8_soc_init+0xb0/0x1e0 do_one_initcall+0x94/0x1a8 kernel_init_freeable+0x240/0x2a8 kernel_init+0x28/0x140 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- SoC: i.MX8MP revision 1.1 " | ||||
CVE-2024-50061 | 1 Linux | 1 Linux Kernel | 2025-01-15 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: i3c: master: cdns: Fix use after free vulnerability in cdns_i3c_master Driver Due to Race Condition In the cdns_i3c_master_probe function, &master->hj_work is bound with cdns_i3c_master_hj. And cdns_i3c_master_interrupt can call cnds_i3c_master_demux_ibis function to start the work. If we remove the module which will call cdns_i3c_master_remove to make cleanup, it will free master->base through i3c_master_unregister while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | cdns_i3c_master_hj cdns_i3c_master_remove | i3c_master_unregister(&master->base) | device_unregister(&master->dev) | device_release | //free master->base | | i3c_master_do_daa(&master->base) | //use master->base Fix it by ensuring that the work is canceled before proceeding with the cleanup in cdns_i3c_master_remove. | ||||
CVE-2024-48873 | 2025-01-15 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: check return value of ieee80211_probereq_get() for RNR The return value of ieee80211_probereq_get() might be NULL, so check it before using to avoid NULL pointer access. Addresses-Coverity-ID: 1529805 ("Dereference null return value") | ||||
CVE-2024-47665 | 1 Linux | 1 Linux Kernel | 2025-01-15 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: i3c: mipi-i3c-hci: Error out instead on BUG_ON() in IBI DMA setup Definitely condition dma_get_cache_alignment * defined value > 256 during driver initialization is not reason to BUG_ON(). Turn that to graceful error out with -EINVAL. | ||||
CVE-2024-45828 | 2025-01-15 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: i3c: mipi-i3c-hci: Mask ring interrupts before ring stop request Bus cleanup path in DMA mode may trigger a RING_OP_STAT interrupt when the ring is being stopped. Depending on timing between ring stop request completion, interrupt handler removal and code execution this may lead to a NULL pointer dereference in hci_dma_irq_handler() if it gets to run after the io_data pointer is set to NULL in hci_dma_cleanup(). Prevent this my masking the ring interrupts before ring stop request. | ||||
CVE-2024-43098 | 2025-01-15 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: i3c: Use i3cdev->desc->info instead of calling i3c_device_get_info() to avoid deadlock A deadlock may happen since the i3c_master_register() acquires &i3cbus->lock twice. See the log below. Use i3cdev->desc->info instead of calling i3c_device_info() to avoid acquiring the lock twice. v2: - Modified the title and commit message ============================================ WARNING: possible recursive locking detected 6.11.0-mainline -------------------------------------------- init/1 is trying to acquire lock: f1ffff80a6a40dc0 (&i3cbus->lock){++++}-{3:3}, at: i3c_bus_normaluse_lock but task is already holding lock: f1ffff80a6a40dc0 (&i3cbus->lock){++++}-{3:3}, at: i3c_master_register other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&i3cbus->lock); lock(&i3cbus->lock); *** DEADLOCK *** May be due to missing lock nesting notation 2 locks held by init/1: #0: fcffff809b6798f8 (&dev->mutex){....}-{3:3}, at: __driver_attach #1: f1ffff80a6a40dc0 (&i3cbus->lock){++++}-{3:3}, at: i3c_master_register stack backtrace: CPU: 6 UID: 0 PID: 1 Comm: init Call trace: dump_backtrace+0xfc/0x17c show_stack+0x18/0x28 dump_stack_lvl+0x40/0xc0 dump_stack+0x18/0x24 print_deadlock_bug+0x388/0x390 __lock_acquire+0x18bc/0x32ec lock_acquire+0x134/0x2b0 down_read+0x50/0x19c i3c_bus_normaluse_lock+0x14/0x24 i3c_device_get_info+0x24/0x58 i3c_device_uevent+0x34/0xa4 dev_uevent+0x310/0x384 kobject_uevent_env+0x244/0x414 kobject_uevent+0x14/0x20 device_add+0x278/0x460 device_register+0x20/0x34 i3c_master_register_new_i3c_devs+0x78/0x154 i3c_master_register+0x6a0/0x6d4 mtk_i3c_master_probe+0x3b8/0x4d8 platform_probe+0xa0/0xe0 really_probe+0x114/0x454 __driver_probe_device+0xa0/0x15c driver_probe_device+0x3c/0x1ac __driver_attach+0xc4/0x1f0 bus_for_each_dev+0x104/0x160 driver_attach+0x24/0x34 bus_add_driver+0x14c/0x294 driver_register+0x68/0x104 __platform_driver_register+0x20/0x30 init_module+0x20/0xfe4 do_one_initcall+0x184/0x464 do_init_module+0x58/0x1ec load_module+0xefc/0x10c8 __arm64_sys_finit_module+0x238/0x33c invoke_syscall+0x58/0x10c el0_svc_common+0xa8/0xdc do_el0_svc+0x1c/0x28 el0_svc+0x50/0xac el0t_64_sync_handler+0x70/0xbc el0t_64_sync+0x1a8/0x1ac | ||||
CVE-2023-52766 | 1 Linux | 1 Linux Kernel | 2025-01-15 | 7.1 High |
In the Linux kernel, the following vulnerability has been resolved: i3c: mipi-i3c-hci: Fix out of bounds access in hci_dma_irq_handler Do not loop over ring headers in hci_dma_irq_handler() that are not allocated and enabled in hci_dma_init(). Otherwise out of bounds access will occur from rings->headers[i] access when i >= number of allocated ring headers. | ||||
CVE-2023-52763 | 2025-01-15 | 4.4 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: i3c: master: mipi-i3c-hci: Fix a kernel panic for accessing DAT_data. The `i3c_master_bus_init` function may attach the I2C devices before the I3C bus initialization. In this flow, the DAT `alloc_entry`` will be used before the DAT `init`. Additionally, if the `i3c_master_bus_init` fails, the DAT `cleanup` will execute before the device is detached, which will execue DAT `free_entry` function. The above scenario can cause the driver to use DAT_data when it is NULL. | ||||
CVE-2024-12593 | 2025-01-15 | 6.4 Medium | ||
The PDF for WPForms + Drag and Drop Template Builder plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's yeepdf_dotab shortcode in all versions up to, and including, 4.6.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | ||||
CVE-2024-11851 | 2025-01-15 | 4.3 Medium | ||
The NitroPack plugin for WordPress is vulnerable to unauthorized arbitrary transient update due to a missing capability check on the nitropack_rml_notification function in all versions up to, and including, 1.17.0. This makes it possible for authenticated attackers, with subscriber access or higher, to update arbitrary transients. Note, that these transients can only be updated to integers and not arbitrary values. | ||||
CVE-2024-11848 | 2025-01-15 | 8.1 High | ||
The NitroPack plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the 'nitropack_dismiss_notice_forever' AJAX action in all versions up to, and including, 1.17.0. This makes it possible for authenticated attackers, with subscriber-level access and above, to update arbitrary options to a fixed value of '1' which can activate certain options (e.g., enable user registration) or modify certain options in a way that leads to a denial of service condition. | ||||
CVE-2025-0448 | 2025-01-15 | N/A | ||
Inappropriate implementation in Compositing in Google Chrome prior to 132.0.6834.83 allowed a remote attacker to perform UI spoofing via a crafted HTML page. (Chromium security severity: Low) | ||||
CVE-2025-0447 | 2025-01-15 | N/A | ||
Inappropriate implementation in Navigation in Google Chrome prior to 132.0.6834.83 allowed a remote attacker to perform privilege escalation via a crafted HTML page. (Chromium security severity: Low) | ||||
CVE-2025-0446 | 2025-01-15 | N/A | ||
Inappropriate implementation in Extensions in Google Chrome prior to 132.0.6834.83 allowed a remote attacker who convinced a user to engage in specific UI gestures to perform UI spoofing via a crafted Chrome Extension. (Chromium security severity: Low) | ||||
CVE-2025-0443 | 2025-01-15 | N/A | ||
Insufficient data validation in Extensions in Google Chrome prior to 132.0.6834.83 allowed a remote attacker who convinced a user to engage in specific UI gestures to perform privilege escalation via a crafted HTML page. (Chromium security severity: Medium) | ||||
CVE-2025-0442 | 2025-01-15 | N/A | ||
Inappropriate implementation in Payments in Google Chrome prior to 132.0.6834.83 allowed a remote attacker who convinced a user to engage in specific UI gestures to perform UI spoofing via a crafted HTML page. (Chromium security severity: Medium) | ||||
CVE-2025-0441 | 2025-01-15 | N/A | ||
Inappropriate implementation in Fenced Frames in Google Chrome prior to 132.0.6834.83 allowed a remote attacker to obtain potentially sensitive information from the system via a crafted HTML page. (Chromium security severity: Medium) | ||||
CVE-2025-0440 | 2025-01-15 | N/A | ||
Inappropriate implementation in Fullscreen in Google Chrome on Windows prior to 132.0.6834.83 allowed a remote attacker to perform UI spoofing via a crafted HTML page. (Chromium security severity: Medium) | ||||
CVE-2025-0439 | 2025-01-15 | N/A | ||
Race in Frames in Google Chrome prior to 132.0.6834.83 allowed a remote attacker who convinced a user to engage in specific UI gestures to perform UI spoofing via a crafted HTML page. (Chromium security severity: Medium) |