CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Insufficient input validation in SYS_KEY_DERIVE system call in a compromised user application or ABL may allow an attacker to corrupt ASP (AMD Secure Processor) OS memory which may lead to potential arbitrary code execution.
|
Insufficient checks in SEV may lead to a malicious hypervisor disclosing the launch secret potentially resulting in compromise of VM confidentiality.
|
Improper syscall input validation in the ASP Bootloader may allow a privileged attacker to read memory out-of-bounds, potentially leading to a denial-of-service.
|
A TOCTOU (Time-Of-Check-Time-Of-Use) in SMM may allow
an attacker with ring0 privileges and access to the
BIOS menu or UEFI shell to modify the communications buffer potentially
resulting in arbitrary code execution. |
An out of bounds memory write when processing the AMD
PSP1 Configuration Block (APCB) could allow an attacker with access the ability
to modify the BIOS image, and the ability to sign the resulting image, to
potentially modify the APCB block resulting in arbitrary code execution. |
IBPB may not prevent return branch predictions from being specified by pre-IBPB branch targets leading to a potential information disclosure. |
Improper access control settings in ASP
Bootloader may allow an attacker to corrupt the return address causing a
stack-based buffer overrun potentially leading to arbitrary code execution.
|
Insufficient validation of inputs in
SVC_MAP_USER_STACK in the ASP (AMD Secure Processor) bootloader may allow an
attacker with a malicious Uapp or ABL to send malformed or invalid syscall to
the bootloader resulting in a potential denial of service and loss of
integrity.
|
Insufficient validation in parsing Owner's
Certificate Authority (OCA) certificates in SEV (AMD Secure Encrypted Virtualization)
and SEV-ES user application can lead to a host crash potentially resulting in
denial of service.
|
A compromised or malicious ABL or UApp could
send a SHA256 system call to the bootloader, which may result in exposure of
ASP memory to userspace, potentially leading to information disclosure.
|
A TOCTOU in ASP bootloader may allow an attacker
to tamper with the SPI ROM following data read to memory potentially resulting
in S3 data corruption and information disclosure.
|
A potential power side-channel vulnerability in some AMD processors may allow an authenticated attacker to use the power reporting functionality to monitor a program’s execution inside an AMD SEV VM potentially resulting in a leak of sensitive information.
|
Improper or unexpected behavior of the INVD instruction in some AMD CPUs may allow an attacker with a malicious hypervisor to affect cache line write-back behavior of the CPU leading to a potential loss of guest virtual machine (VM) memory integrity.
|
A division-by-zero error on some AMD processors can potentially return speculative data resulting in loss of confidentiality.
|
Insufficient input validation in the ASP Bootloader may enable a privileged attacker with physical access to expose the contents of ASP memory potentially leading to a loss of confidentiality. |
TOCTOU in the ASP Bootloader may allow an attacker with physical access to tamper with SPI ROM records after memory content verification, potentially leading to loss of confidentiality or a denial of service. |
Mis-trained branch predictions for return instructions may allow arbitrary speculative code execution under certain microarchitecture-dependent conditions. |
Aliases in the branch predictor may cause some AMD processors to predict the wrong branch type potentially leading to information disclosure. |
A potential vulnerability in some AMD processors using frequency scaling may allow an authenticated attacker to execute a timing attack to potentially enable information disclosure. |
Execution unit scheduler contention may lead to a side channel vulnerability found on AMD CPU microarchitectures codenamed “Zen 1”, “Zen 2” and “Zen 3” that use simultaneous multithreading (SMT). By measuring the contention level on scheduler queues an attacker may potentially leak sensitive information. |