Filtered by vendor Oracle
Subscriptions
Filtered by product Essbase
Subscriptions
Total
22 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2023-22010 | 1 Oracle | 1 Essbase | 2024-11-21 | 2.2 Low |
Vulnerability in Oracle Essbase (component: Security and Provisioning). The supported version that is affected is 21.4.3.0.0. Difficult to exploit vulnerability allows high privileged attacker with network access via HTTP to compromise Oracle Essbase. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Oracle Essbase accessible data. CVSS 3.1 Base Score 2.2 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:U/C:L/I:N/A:N). | ||||
CVE-2023-21944 | 1 Oracle | 1 Essbase | 2024-11-21 | 5.3 Medium |
Vulnerability in Oracle Essbase (component: Security and Provisioning). The supported version that is affected is 21.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle Essbase. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Essbase accessible data. CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:N/A:N). | ||||
CVE-2023-21943 | 1 Oracle | 1 Essbase | 2024-11-21 | 5.3 Medium |
Vulnerability in Oracle Essbase (component: Security and Provisioning). The supported version that is affected is 21.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle Essbase. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Essbase accessible data. CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:N/A:N). | ||||
CVE-2023-21942 | 1 Oracle | 1 Essbase | 2024-11-21 | 5.3 Medium |
Vulnerability in Oracle Essbase (component: Security and Provisioning). The supported version that is affected is 21.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle Essbase. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Essbase accessible data. CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:N/A:N). | ||||
CVE-2022-21508 | 1 Oracle | 1 Essbase | 2024-11-21 | 5.8 Medium |
Vulnerability in Oracle Essbase (component: Security and Provisioning). The supported version that is affected is 21.3. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle Essbase executes to compromise Oracle Essbase. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle Essbase accessible data as well as unauthorized access to critical data or complete access to all Oracle Essbase accessible data. CVSS 3.1 Base Score 5.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:R/S:U/C:H/I:H/A:N). | ||||
CVE-2021-3712 | 8 Debian, Mcafee, Netapp and 5 more | 36 Debian Linux, Epolicy Orchestrator, Clustered Data Ontap and 33 more | 2024-11-21 | 7.4 High |
ASN.1 strings are represented internally within OpenSSL as an ASN1_STRING structure which contains a buffer holding the string data and a field holding the buffer length. This contrasts with normal C strings which are repesented as a buffer for the string data which is terminated with a NUL (0) byte. Although not a strict requirement, ASN.1 strings that are parsed using OpenSSL's own "d2i" functions (and other similar parsing functions) as well as any string whose value has been set with the ASN1_STRING_set() function will additionally NUL terminate the byte array in the ASN1_STRING structure. However, it is possible for applications to directly construct valid ASN1_STRING structures which do not NUL terminate the byte array by directly setting the "data" and "length" fields in the ASN1_STRING array. This can also happen by using the ASN1_STRING_set0() function. Numerous OpenSSL functions that print ASN.1 data have been found to assume that the ASN1_STRING byte array will be NUL terminated, even though this is not guaranteed for strings that have been directly constructed. Where an application requests an ASN.1 structure to be printed, and where that ASN.1 structure contains ASN1_STRINGs that have been directly constructed by the application without NUL terminating the "data" field, then a read buffer overrun can occur. The same thing can also occur during name constraints processing of certificates (for example if a certificate has been directly constructed by the application instead of loading it via the OpenSSL parsing functions, and the certificate contains non NUL terminated ASN1_STRING structures). It can also occur in the X509_get1_email(), X509_REQ_get1_email() and X509_get1_ocsp() functions. If a malicious actor can cause an application to directly construct an ASN1_STRING and then process it through one of the affected OpenSSL functions then this issue could be hit. This might result in a crash (causing a Denial of Service attack). It could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext). Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). Fixed in OpenSSL 1.0.2za (Affected 1.0.2-1.0.2y). | ||||
CVE-2021-3711 | 6 Debian, Netapp, Openssl and 3 more | 32 Debian Linux, Active Iq Unified Manager, Clustered Data Ontap and 29 more | 2024-11-21 | 9.8 Critical |
In order to decrypt SM2 encrypted data an application is expected to call the API function EVP_PKEY_decrypt(). Typically an application will call this function twice. The first time, on entry, the "out" parameter can be NULL and, on exit, the "outlen" parameter is populated with the buffer size required to hold the decrypted plaintext. The application can then allocate a sufficiently sized buffer and call EVP_PKEY_decrypt() again, but this time passing a non-NULL value for the "out" parameter. A bug in the implementation of the SM2 decryption code means that the calculation of the buffer size required to hold the plaintext returned by the first call to EVP_PKEY_decrypt() can be smaller than the actual size required by the second call. This can lead to a buffer overflow when EVP_PKEY_decrypt() is called by the application a second time with a buffer that is too small. A malicious attacker who is able present SM2 content for decryption to an application could cause attacker chosen data to overflow the buffer by up to a maximum of 62 bytes altering the contents of other data held after the buffer, possibly changing application behaviour or causing the application to crash. The location of the buffer is application dependent but is typically heap allocated. Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). | ||||
CVE-2021-3449 | 13 Checkpoint, Debian, Fedoraproject and 10 more | 172 Multi-domain Management, Multi-domain Management Firmware, Quantum Security Gateway and 169 more | 2024-11-21 | 5.9 Medium |
An OpenSSL TLS server may crash if sent a maliciously crafted renegotiation ClientHello message from a client. If a TLSv1.2 renegotiation ClientHello omits the signature_algorithms extension (where it was present in the initial ClientHello), but includes a signature_algorithms_cert extension then a NULL pointer dereference will result, leading to a crash and a denial of service attack. A server is only vulnerable if it has TLSv1.2 and renegotiation enabled (which is the default configuration). OpenSSL TLS clients are not impacted by this issue. All OpenSSL 1.1.1 versions are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1k. OpenSSL 1.0.2 is not impacted by this issue. Fixed in OpenSSL 1.1.1k (Affected 1.1.1-1.1.1j). | ||||
CVE-2021-23841 | 8 Apple, Debian, Netapp and 5 more | 27 Ipados, Iphone Os, Macos and 24 more | 2024-11-21 | 5.9 Medium |
The OpenSSL public API function X509_issuer_and_serial_hash() attempts to create a unique hash value based on the issuer and serial number data contained within an X509 certificate. However it fails to correctly handle any errors that may occur while parsing the issuer field (which might occur if the issuer field is maliciously constructed). This may subsequently result in a NULL pointer deref and a crash leading to a potential denial of service attack. The function X509_issuer_and_serial_hash() is never directly called by OpenSSL itself so applications are only vulnerable if they use this function directly and they use it on certificates that may have been obtained from untrusted sources. OpenSSL versions 1.1.1i and below are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1j. OpenSSL versions 1.0.2x and below are affected by this issue. However OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.1.1j (Affected 1.1.1-1.1.1i). Fixed in OpenSSL 1.0.2y (Affected 1.0.2-1.0.2x). | ||||
CVE-2021-22901 | 6 Haxx, Netapp, Oracle and 3 more | 35 Curl, Active Iq Unified Manager, Cloud Backup and 32 more | 2024-11-21 | 8.1 High |
curl 7.75.0 through 7.76.1 suffers from a use-after-free vulnerability resulting in already freed memory being used when a TLS 1.3 session ticket arrives over a connection. A malicious server can use this in rare unfortunate circumstances to potentially reach remote code execution in the client. When libcurl at run-time sets up support for TLS 1.3 session tickets on a connection using OpenSSL, it stores pointers to the transfer in-memory object for later retrieval when a session ticket arrives. If the connection is used by multiple transfers (like with a reused HTTP/1.1 connection or multiplexed HTTP/2 connection) that first transfer object might be freed before the new session is established on that connection and then the function will access a memory buffer that might be freed. When using that memory, libcurl might even call a function pointer in the object, making it possible for a remote code execution if the server could somehow manage to get crafted memory content into the correct place in memory. | ||||
CVE-2021-22898 | 7 Debian, Fedoraproject, Haxx and 4 more | 13 Debian Linux, Fedora, Curl and 10 more | 2024-11-21 | 3.1 Low |
curl 7.7 through 7.76.1 suffers from an information disclosure when the `-t` command line option, known as `CURLOPT_TELNETOPTIONS` in libcurl, is used to send variable=content pairs to TELNET servers. Due to a flaw in the option parser for sending NEW_ENV variables, libcurl could be made to pass on uninitialized data from a stack based buffer to the server, resulting in potentially revealing sensitive internal information to the server using a clear-text network protocol. | ||||
CVE-2021-22897 | 5 Haxx, Netapp, Oracle and 2 more | 30 Curl, Cloud Backup, H300e and 27 more | 2024-11-21 | 5.3 Medium |
curl 7.61.0 through 7.76.1 suffers from exposure of data element to wrong session due to a mistake in the code for CURLOPT_SSL_CIPHER_LIST when libcurl is built to use the Schannel TLS library. The selected cipher set was stored in a single "static" variable in the library, which has the surprising side-effect that if an application sets up multiple concurrent transfers, the last one that sets the ciphers will accidentally control the set used by all transfers. In a worst-case scenario, this weakens transport security significantly. | ||||
CVE-2021-22890 | 9 Broadcom, Debian, Fedoraproject and 6 more | 12 Fabric Operating System, Debian Linux, Fedora and 9 more | 2024-11-21 | 3.7 Low |
curl 7.63.0 to and including 7.75.0 includes vulnerability that allows a malicious HTTPS proxy to MITM a connection due to bad handling of TLS 1.3 session tickets. When using a HTTPS proxy and TLS 1.3, libcurl can confuse session tickets arriving from the HTTPS proxy but work as if they arrived from the remote server and then wrongly "short-cut" the host handshake. When confusing the tickets, a HTTPS proxy can trick libcurl to use the wrong session ticket resume for the host and thereby circumvent the server TLS certificate check and make a MITM attack to be possible to perform unnoticed. Note that such a malicious HTTPS proxy needs to provide a certificate that curl will accept for the MITMed server for an attack to work - unless curl has been told to ignore the server certificate check. | ||||
CVE-2021-22876 | 9 Broadcom, Debian, Fedoraproject and 6 more | 15 Fabric Operating System, Debian Linux, Fedora and 12 more | 2024-11-21 | 5.3 Medium |
curl 7.1.1 to and including 7.75.0 is vulnerable to an "Exposure of Private Personal Information to an Unauthorized Actor" by leaking credentials in the HTTP Referer: header. libcurl does not strip off user credentials from the URL when automatically populating the Referer: HTTP request header field in outgoing HTTP requests, and therefore risks leaking sensitive data to the server that is the target of the second HTTP request. | ||||
CVE-2021-20718 | 3 Fedoraproject, Openidc, Oracle | 3 Fedora, Mod Auth Openidc, Essbase | 2024-11-21 | 7.5 High |
mod_auth_openidc 2.4.0 to 2.4.7 allows a remote attacker to cause a denial-of-service (DoS) condition via unspecified vectors. | ||||
CVE-2020-8286 | 9 Apple, Debian, Fedoraproject and 6 more | 22 Mac Os X, Macos, Debian Linux and 19 more | 2024-11-21 | 7.5 High |
curl 7.41.0 through 7.73.0 is vulnerable to an improper check for certificate revocation due to insufficient verification of the OCSP response. | ||||
CVE-2020-8285 | 10 Apple, Debian, Fedoraproject and 7 more | 32 Mac Os X, Macos, Debian Linux and 29 more | 2024-11-21 | 7.5 High |
curl 7.21.0 to and including 7.73.0 is vulnerable to uncontrolled recursion due to a stack overflow issue in FTP wildcard match parsing. | ||||
CVE-2020-8284 | 10 Apple, Debian, Fedoraproject and 7 more | 31 Mac Os X, Macos, Debian Linux and 28 more | 2024-11-21 | 3.7 Low |
A malicious server can use the FTP PASV response to trick curl 7.73.0 and earlier into connecting back to a given IP address and port, and this way potentially make curl extract information about services that are otherwise private and not disclosed, for example doing port scanning and service banner extractions. | ||||
CVE-2020-7760 | 2 Codemirror, Oracle | 6 Codemirror, Application Express, Enterprise Manager Express User Interface and 3 more | 2024-11-21 | 5.3 Medium |
This affects the package codemirror before 5.58.2; the package org.apache.marmotta.webjars:codemirror before 5.58.2. The vulnerable regular expression is located in https://github.com/codemirror/CodeMirror/blob/cdb228ac736369c685865b122b736cd0d397836c/mode/javascript/javascript.jsL129. The ReDOS vulnerability of the regex is mainly due to the sub-pattern (s|/*.*?*/)* | ||||
CVE-2020-1971 | 9 Debian, Fedoraproject, Netapp and 6 more | 55 Debian Linux, Fedora, Active Iq Unified Manager and 52 more | 2024-11-21 | 5.9 Medium |
The X.509 GeneralName type is a generic type for representing different types of names. One of those name types is known as EDIPartyName. OpenSSL provides a function GENERAL_NAME_cmp which compares different instances of a GENERAL_NAME to see if they are equal or not. This function behaves incorrectly when both GENERAL_NAMEs contain an EDIPARTYNAME. A NULL pointer dereference and a crash may occur leading to a possible denial of service attack. OpenSSL itself uses the GENERAL_NAME_cmp function for two purposes: 1) Comparing CRL distribution point names between an available CRL and a CRL distribution point embedded in an X509 certificate 2) When verifying that a timestamp response token signer matches the timestamp authority name (exposed via the API functions TS_RESP_verify_response and TS_RESP_verify_token) If an attacker can control both items being compared then that attacker could trigger a crash. For example if the attacker can trick a client or server into checking a malicious certificate against a malicious CRL then this may occur. Note that some applications automatically download CRLs based on a URL embedded in a certificate. This checking happens prior to the signatures on the certificate and CRL being verified. OpenSSL's s_server, s_client and verify tools have support for the "-crl_download" option which implements automatic CRL downloading and this attack has been demonstrated to work against those tools. Note that an unrelated bug means that affected versions of OpenSSL cannot parse or construct correct encodings of EDIPARTYNAME. However it is possible to construct a malformed EDIPARTYNAME that OpenSSL's parser will accept and hence trigger this attack. All OpenSSL 1.1.1 and 1.0.2 versions are affected by this issue. Other OpenSSL releases are out of support and have not been checked. Fixed in OpenSSL 1.1.1i (Affected 1.1.1-1.1.1h). Fixed in OpenSSL 1.0.2x (Affected 1.0.2-1.0.2w). |