| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Apache HttpClient versions prior to version 4.5.13 and 5.0.3 can misinterpret malformed authority component in request URIs passed to the library as java.net.URI object and pick the wrong target host for request execution. |
| A flaw was found in npm-serialize-javascript. The vulnerability occurs because the serialize-javascript module does not properly sanitize certain inputs, such as regex or other JavaScript object types, allowing an attacker to inject malicious code. This code could be executed when deserialized by a web browser, causing Cross-site scripting (XSS) attacks. This issue is critical in environments where serialized data is sent to web clients, potentially compromising the security of the website or web application using this package. |
| A flaw was found in Infinispan, which does not detect circular object references when unmarshalling. An authenticated attacker with sufficient permissions could insert a maliciously constructed object into the cache and use it to cause out of memory errors and achieve a denial of service. |
| A flaw was found in Quarkus. When a Quarkus RestEasy Classic or Reactive JAX-RS endpoint has its methods declared in the abstract Java class or customized by Quarkus extensions using the annotation processor, the authorization of these methods will not be enforced if it is enabled by either 'quarkus.security.jaxrs.deny-unannotated-endpoints' or 'quarkus.security.jaxrs.default-roles-allowed' properties. |
| A flaw was found in the SAML client registration in Keycloak that could allow an administrator to register malicious JavaScript URIs as Assertion Consumer Service POST Binding URLs (ACS), posing a Cross-Site Scripting (XSS) risk. This issue may allow a malicious admin in one realm or a client with registration access to target users in different realms or applications, executing arbitrary JavaScript in their contexts upon form submission. This can enable unauthorized access and harmful actions, compromising the confidentiality, integrity, and availability of the complete KC instance. |
| There is a vulnerability in all angular versions before 1.5.0-beta.0, where after escaping the context of the web application, the web application delivers data to its users along with other trusted dynamic content, without validating it. |
| A flaw was found in Wildfly Elytron integration. The component does not implement sufficient measures to prevent multiple failed authentication attempts within a short time frame, making it more susceptible to brute force attacks via CLI. |
| A flaw was found in Undertow where malformed client requests can trigger server-side stream resets without triggering abuse counters. This issue, referred to as the "MadeYouReset" attack, allows malicious clients to induce excessive server workload by repeatedly causing server-side stream aborts. While not a protocol bug, this highlights a common implementation weakness that can be exploited to cause a denial of service (DoS). |
| A flaw was found in Keycloak's OIDC component in the "checkLoginIframe," which allows unvalidated cross-origin messages. This flaw allows attackers to coordinate and send millions of requests in seconds using simple code, significantly impacting the application's availability without proper origin validation for incoming messages. |
| A vulnerability was found in Wildfly’s management interface. Due to the lack of limitation of sockets for the management interface, it may be possible to cause a denial of service hitting the nofile limit as there is no possibility to configure or set a maximum number of connections. |
| A flaw was found in the redirect_uri validation logic in Keycloak. This issue may allow a bypass of otherwise explicitly allowed hosts. A successful attack may lead to an access token being stolen, making it possible for the attacker to impersonate other users. |
| A flaw was found in Quarkus-HTTP, which incorrectly parses cookies with
certain value-delimiting characters in incoming requests. This issue could
allow an attacker to construct a cookie value to exfiltrate HttpOnly cookie
values or spoof arbitrary additional cookie values, leading to unauthorized
data access or modification. The main threat from this flaw impacts data
confidentiality and integrity. |
| A path traversal vulnerability was found in Undertow. This issue may allow a remote attacker to append a specially-crafted sequence to an HTTP request for an application deployed to JBoss EAP, which may permit access to privileged or restricted files and directories. |
| A denial of service vulnerability was found in keycloak where the amount of attributes per object is not limited,an attacker by sending repeated HTTP requests could cause a resource exhaustion when the application send back rows with long attribute values. |
| A vulnerability was found in Undertow where the ProxyProtocolReadListener reuses the same StringBuilder instance across multiple requests. This issue occurs when the parseProxyProtocolV1 method processes multiple requests on the same HTTP connection. As a result, different requests may share the same StringBuilder instance, potentially leading to information leakage between requests or responses. In some cases, a value from a previous request or response may be erroneously reused, which could lead to unintended data exposure. This issue primarily results in errors and connection termination but creates a risk of data leakage in multi-request environments. |
| A vulnerability was found in Undertow, where URL-encoded request paths can be mishandled during concurrent requests on the AJP listener. This issue arises because the same buffer is used to decode the paths for multiple requests simultaneously, leading to incorrect path information being processed. As a result, the server may attempt to access the wrong path, causing errors such as "404 Not Found" or other application failures. This flaw can potentially lead to a denial of service, as legitimate resources become inaccessible due to the path mix-up. |
| A vulnerability was found in Undertow, where the chunked response hangs after the body was flushed. The response headers and body were sent but the client would continue waiting as Undertow does not send the expected 0\r\n termination of the chunked response. This results in uncontrolled resource consumption, leaving the server side to a denial of service attack. This happens only with Java 17 TLSv1.3 scenarios. |
| A vulnerability was found in Undertow. This vulnerability impacts a server that supports the wildfly-http-client protocol. Whenever a malicious user opens and closes a connection with the HTTP port of the server and then closes the connection immediately, the server will end with both memory and open file limits exhausted at some point, depending on the amount of memory available.
At HTTP upgrade to remoting, the WriteTimeoutStreamSinkConduit leaks connections if RemotingConnection is closed by Remoting ServerConnectionOpenListener. Because the remoting connection originates in Undertow as part of the HTTP upgrade, there is an external layer to the remoting connection. This connection is unaware of the outermost layer when closing the connection during the connection opening procedure. Hence, the Undertow WriteTimeoutStreamSinkConduit is not notified of the closed connection in this scenario. Because WriteTimeoutStreamSinkConduit creates a timeout task, the whole dependency tree leaks via that task, which is added to XNIO WorkerThread. So, the workerThread points to the Undertow conduit, which contains the connections and causes the leak. |
| A flaw was found in Keycloak, where it does not properly validate URLs included in a redirect. This issue could allow an attacker to construct a malicious request to bypass validation and access other URLs and sensitive information within the domain or conduct further attacks. This flaw affects any client that utilizes a wildcard in the Valid Redirect URIs field, and requires user interaction within the malicious URL. |
| A flaw was found in XNIO. The XNIO NotifierState that can cause a Stack Overflow Exception when the chain of notifier states becomes problematically large can lead to uncontrolled resource management and a possible denial of service (DoS). |