CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Failure to validate the communication buffer and communication service in the BIOS may allow an attacker to tamper with the buffer resulting in potential SMM (System Management Mode) arbitrary code execution. |
Insufficient control flow management in AmdCpmGpioInitSmm may allow a privileged attacker to tamper with the SMM handler potentially leading to escalation of privileges.
|
Insufficient control flow management in AmdCpmOemSmm may allow a privileged attacker to tamper with the SMM handler potentially leading to an escalation of privileges.
|
IBPB may not prevent return branch predictions from being specified by pre-IBPB branch targets leading to a potential information disclosure. |
A compromised or malicious ABL or UApp could
send a SHA256 system call to the bootloader, which may result in exposure of
ASP memory to userspace, potentially leading to information disclosure.
|
Certain size values in firmware binary headers
could trigger out of bounds reads during signature validation, leading to
denial of service or potentially limited leakage of information about
out-of-bounds memory contents.
|
Insufficient bounds checking in ASP may allow an
attacker to issue a system call from a compromised ABL which may cause
arbitrary memory values to be initialized to zero, potentially leading to a
loss of integrity.
|
Mis-trained branch predictions for return instructions may allow arbitrary speculative code execution under certain microarchitecture-dependent conditions. |
When SMT is enabled, certain AMD processors may speculatively execute instructions using a target
from the sibling thread after an SMT mode switch potentially resulting in information disclosure.
|
Aliases in the branch predictor may cause some AMD processors to predict the wrong branch type potentially leading to information disclosure. |
A potential vulnerability in some AMD processors using frequency scaling may allow an authenticated attacker to execute a timing attack to potentially enable information disclosure. |
Execution unit scheduler contention may lead to a side channel vulnerability found on AMD CPU microarchitectures codenamed “Zen 1”, “Zen 2” and “Zen 3” that use simultaneous multithreading (SMT). By measuring the contention level on scheduler queues an attacker may potentially leak sensitive information. |
LFENCE/JMP (mitigation V2-2) may not sufficiently mitigate CVE-2017-5715 on some AMD CPUs. |
Insufficient memory cleanup in the AMD Secure Processor (ASP) Trusted Execution Environment (TEE) may allow an authenticated attacker with privileges to generate a valid signed TA and potentially poison the contents of the process memory with attacker controlled data resulting in a loss of confidentiality. |
Insufficient verification of missing size check in 'LoadModule' may lead to an out-of-bounds write potentially allowing an attacker with privileges to gain code execution of the OS/kernel by loading a malicious TA. |
Improper validation of the BIOS directory may allow for searches to read beyond the directory table copy in RAM, exposing out of bounds memory contents, resulting in a potential denial of service. |
A malicious or compromised UApp or ABL may be used by an attacker to issue a malformed system call to the Stage 2 Bootloader potentially leading to corrupt memory and code execution. |
A malformed SMI (System Management Interface) command may allow an attacker to establish a corrupted SMI Trigger Info data structure, potentially leading to out-of-bounds memory reads and writes when triggering an SMI resulting in a potential loss of resources. |
Insufficient bound checks in the System Management Unit (SMU) may result in access to an invalid address space that could result in denial of service. |
Insufficient checks in System Management Unit (SMU) FeatureConfig may result in reenabling features potentially resulting in denial of resources and/or denial of service. |