| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Integer Overflow or Wraparound vulnerability in apr_encode functions of Apache Portable Runtime (APR) allows an attacker to write beyond bounds of a buffer.
This issue affects Apache Portable Runtime (APR) version 1.7.0. |
| Substitution encoding issue in mod_rewrite in Apache HTTP Server 2.4.59 and earlier allows attacker to execute scripts in
directories permitted by the configuration but not directly reachable by any URL or source disclosure of scripts meant to only to be executed as CGI.
Users are recommended to upgrade to version 2.4.60, which fixes this issue.
Some RewriteRules that capture and substitute unsafely will now fail unless rewrite flag "UnsafeAllow3F" is specified. |
| Issue summary: Processing some specially crafted ASN.1 object identifiers or
data containing them may be very slow.
Impact summary: Applications that use OBJ_obj2txt() directly, or use any of
the OpenSSL subsystems OCSP, PKCS7/SMIME, CMS, CMP/CRMF or TS with no message
size limit may experience notable to very long delays when processing those
messages, which may lead to a Denial of Service.
An OBJECT IDENTIFIER is composed of a series of numbers - sub-identifiers -
most of which have no size limit. OBJ_obj2txt() may be used to translate
an ASN.1 OBJECT IDENTIFIER given in DER encoding form (using the OpenSSL
type ASN1_OBJECT) to its canonical numeric text form, which are the
sub-identifiers of the OBJECT IDENTIFIER in decimal form, separated by
periods.
When one of the sub-identifiers in the OBJECT IDENTIFIER is very large
(these are sizes that are seen as absurdly large, taking up tens or hundreds
of KiBs), the translation to a decimal number in text may take a very long
time. The time complexity is O(n^2) with 'n' being the size of the
sub-identifiers in bytes (*).
With OpenSSL 3.0, support to fetch cryptographic algorithms using names /
identifiers in string form was introduced. This includes using OBJECT
IDENTIFIERs in canonical numeric text form as identifiers for fetching
algorithms.
Such OBJECT IDENTIFIERs may be received through the ASN.1 structure
AlgorithmIdentifier, which is commonly used in multiple protocols to specify
what cryptographic algorithm should be used to sign or verify, encrypt or
decrypt, or digest passed data.
Applications that call OBJ_obj2txt() directly with untrusted data are
affected, with any version of OpenSSL. If the use is for the mere purpose
of display, the severity is considered low.
In OpenSSL 3.0 and newer, this affects the subsystems OCSP, PKCS7/SMIME,
CMS, CMP/CRMF or TS. It also impacts anything that processes X.509
certificates, including simple things like verifying its signature.
The impact on TLS is relatively low, because all versions of OpenSSL have a
100KiB limit on the peer's certificate chain. Additionally, this only
impacts clients, or servers that have explicitly enabled client
authentication.
In OpenSSL 1.1.1 and 1.0.2, this only affects displaying diverse objects,
such as X.509 certificates. This is assumed to not happen in such a way
that it would cause a Denial of Service, so these versions are considered
not affected by this issue in such a way that it would be cause for concern,
and the severity is therefore considered low. |
| An allocation of resources without limits or throttling vulnerability exists in curl <v7.88.0 based on the "chained" HTTP compression algorithms, meaning that a server response can be compressed multiple times and potentially with differentalgorithms. The number of acceptable "links" in this "decompression chain" wascapped, but the cap was implemented on a per-header basis allowing a maliciousserver to insert a virtually unlimited number of compression steps simply byusing many headers. The use of such a decompression chain could result in a "malloc bomb", making curl end up spending enormous amounts of allocated heap memory, or trying to and returning out of memory errors. |
| A cleartext transmission of sensitive information vulnerability exists in curl <v7.88.0 that could cause HSTS functionality fail when multiple URLs are requested serially. Using its HSTS support, curl can be instructed to use HTTPS instead of usingan insecure clear-text HTTP step even when HTTP is provided in the URL. ThisHSTS mechanism would however surprisingly be ignored by subsequent transferswhen done on the same command line because the state would not be properlycarried on. |
| The function X509_VERIFY_PARAM_add0_policy() is documented to
implicitly enable the certificate policy check when doing certificate
verification. However the implementation of the function does not
enable the check which allows certificates with invalid or incorrect
policies to pass the certificate verification.
As suddenly enabling the policy check could break existing deployments it was
decided to keep the existing behavior of the X509_VERIFY_PARAM_add0_policy()
function.
Instead the applications that require OpenSSL to perform certificate
policy check need to use X509_VERIFY_PARAM_set1_policies() or explicitly
enable the policy check by calling X509_VERIFY_PARAM_set_flags() with
the X509_V_FLAG_POLICY_CHECK flag argument.
Certificate policy checks are disabled by default in OpenSSL and are not
commonly used by applications. |
| Applications that use a non-default option when verifying certificates may be
vulnerable to an attack from a malicious CA to circumvent certain checks.
Invalid certificate policies in leaf certificates are silently ignored by
OpenSSL and other certificate policy checks are skipped for that certificate.
A malicious CA could use this to deliberately assert invalid certificate policies
in order to circumvent policy checking on the certificate altogether.
Policy processing is disabled by default but can be enabled by passing
the `-policy' argument to the command line utilities or by calling the
`X509_VERIFY_PARAM_set1_policies()' function. |
| Some mod_proxy configurations on Apache HTTP Server versions 2.4.0 through 2.4.55 allow a HTTP Request Smuggling attack.
Configurations are affected when mod_proxy is enabled along with some form of RewriteRule
or ProxyPassMatch in which a non-specific pattern matches
some portion of the user-supplied request-target (URL) data and is then
re-inserted into the proxied request-target using variable
substitution. For example, something like:
RewriteEngine on
RewriteRule "^/here/(.*)" "http://example.com:8080/elsewhere?$1"; [P]
ProxyPassReverse /here/ http://example.com:8080/
Request splitting/smuggling could result in bypass of access controls in the proxy server, proxying unintended URLs to existing origin servers, and cache poisoning. Users are recommended to update to at least version 2.4.56 of Apache HTTP Server. |
| Integer Overflow or Wraparound vulnerability in apr_base64 functions of Apache Portable Runtime Utility (APR-util) allows an attacker to write beyond bounds of a buffer.
This issue affects Apache Portable Runtime Utility (APR-util) 1.6.1 and prior versions. |
| A carefully crafted If: request header can cause a memory read, or write of a single zero byte, in a pool (heap) memory location beyond the header value sent. This could cause the process to crash.
This issue affects Apache HTTP Server 2.4.54 and earlier. |
| When curl retrieves an HTTP response, it stores the incoming headers so that
they can be accessed later via the libcurl headers API.
However, curl did not have a limit in how many or how large headers it would
accept in a response, allowing a malicious server to stream an endless series
of headers and eventually cause curl to run out of heap memory. |
| A vulnerability exists in curl <7.87.0 HSTS check that could be bypassed to trick it to keep using HTTP. Using its HSTS support, curl can be instructed to use HTTPS instead of using an insecure clear-text HTTP step even when HTTP is provided in the URL. However, the HSTS mechanism could be bypassed if the host name in the given URL first uses IDN characters that get replaced to ASCII counterparts as part of the IDN conversion. Like using the character UTF-8 U+3002 (IDEOGRAPHIC FULL STOP) instead of the common ASCII full stop (U+002E) `.`. Then in a subsequent request, it does not detect the HSTS state and makes a clear text transfer. Because it would store the info IDN encoded but look for it IDN decoded. |
| An issue was discovered in libxml2 before 2.10.4. When hashing empty dict strings in a crafted XML document, xmlDictComputeFastKey in dict.c can produce non-deterministic values, leading to various logic and memory errors, such as a double free. This behavior occurs because there is an attempt to use the first byte of an empty string, and any value is possible (not solely the '\0' value). |
| An improper certificate validation vulnerability exists in curl <v8.1.0 in the way it supports matching of wildcard patterns when listed as "Subject Alternative Name" in TLS server certificates. curl can be built to use its own name matching function for TLS rather than one provided by a TLS library. This private wildcard matching function would match IDN (International Domain Name) hosts incorrectly and could as a result accept patterns that otherwise should mismatch. IDN hostnames are converted to puny code before used for certificate checks. Puny coded names always start with `xn--` and should not be allowed to pattern match, but the wildcard check in curl could still check for `x*`, which would match even though the IDN name most likely contained nothing even resembling an `x`. |
| A use after free vulnerability exists in curl <v8.1.0 in the way libcurl offers a feature to verify an SSH server's public key using a SHA 256 hash. When this check fails, libcurl would free the memory for the fingerprint before it returns an error message containing the (now freed) hash. This flaw risks inserting sensitive heap-based data into the error message that might be shown to users or otherwise get leaked and revealed. |
| Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. |
| Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both. |
| Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both. |
| Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU. |
| Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service. The attacker sends a stream of headers with a 0-length header name and 0-length header value, optionally Huffman encoded into 1-byte or greater headers. Some implementations allocate memory for these headers and keep the allocation alive until the session dies. This can consume excess memory. |