CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
iio: imu: bno055: fix OOB access of hw_xlate array
Fix a potential out-of-bounds array access of the hw_xlate array in
bno055.c.
In bno055_get_regmask(), hw_xlate was iterated over the length of the
vals array instead of the length of the hw_xlate array. In the case of
bno055_gyr_scale, the vals array is larger than the hw_xlate array,
so this could result in an out-of-bounds access. In practice, this
shouldn't happen though because a match should always be found which
breaks out of the for loop before it iterates beyond the end of the
hw_xlate array.
By adding a new hw_xlate_len field to the bno055_sysfs_attr, we can be
sure we are iterating over the correct length. |
In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: Validate length in packet header before skb_put()
When receiving a vsock packet in the guest, only the virtqueue buffer
size is validated prior to virtio_vsock_skb_rx_put(). Unfortunately,
virtio_vsock_skb_rx_put() uses the length from the packet header as the
length argument to skb_put(), potentially resulting in SKB overflow if
the host has gone wonky.
Validate the length as advertised by the packet header before calling
virtio_vsock_skb_rx_put(). |
In the Linux kernel, the following vulnerability has been resolved:
open_tree_attr: do not allow id-mapping changes without OPEN_TREE_CLONE
As described in commit 7a54947e727b ('Merge patch series "fs: allow
changing idmappings"'), open_tree_attr(2) was necessary in order to
allow for a detached mount to be created and have its idmappings changed
without the risk of any racing threads operating on it. For this reason,
mount_setattr(2) still does not allow for id-mappings to be changed.
However, there was a bug in commit 2462651ffa76 ("fs: allow changing
idmappings") which allowed users to bypass this restriction by calling
open_tree_attr(2) *without* OPEN_TREE_CLONE.
can_idmap_mount() prevented this bug from allowing an attached
mountpoint's id-mapping from being modified (thanks to an is_anon_ns()
check), but this still allows for detached (but visible) mounts to have
their be id-mapping changed. This risks the same UAF and locking issues
as described in the merge commit, and was likely unintentional. |
In the Linux kernel, the following vulnerability has been resolved:
parisc: Revise __get_user() to probe user read access
Because of the way read access support is implemented, read access
interruptions are only triggered at privilege levels 2 and 3. The
kernel executes at privilege level 0, so __get_user() never triggers
a read access interruption (code 26). Thus, it is currently possible
for user code to access a read protected address via a system call.
Fix this by probing read access rights at privilege level 3 (PRIV_USER)
and setting __gu_err to -EFAULT (-14) if access isn't allowed.
Note the cmpiclr instruction does a 32-bit compare because COND macro
doesn't work inside asm. |
In the Linux kernel, the following vulnerability has been resolved:
parisc: Revise gateway LWS calls to probe user read access
We use load and stbys,e instructions to trigger memory reference
interruptions without writing to memory. Because of the way read
access support is implemented, read access interruptions are only
triggered at privilege levels 2 and 3. The kernel and gateway
page execute at privilege level 0, so this code never triggers
a read access interruption. Thus, it is currently possible for
user code to execute a LWS compare and swap operation at an
address that is read protected at privilege level 3 (PRIV_USER).
Fix this by probing read access rights at privilege level 3 and
branching to lws_fault if access isn't allowed. |
In the Linux kernel, the following vulnerability has been resolved:
media: usbtv: Lock resolution while streaming
When an program is streaming (ffplay) and another program (qv4l2)
changes the TV standard from NTSC to PAL, the kernel crashes due to trying
to copy to unmapped memory.
Changing from NTSC to PAL increases the resolution in the usbtv struct,
but the video plane buffer isn't adjusted, so it overflows.
[hverkuil: call vb2_is_busy instead of vb2_is_streaming] |
In the Linux kernel, the following vulnerability has been resolved:
media: rainshadow-cec: fix TOCTOU race condition in rain_interrupt()
In the interrupt handler rain_interrupt(), the buffer full check on
rain->buf_len is performed before acquiring rain->buf_lock. This
creates a Time-of-Check to Time-of-Use (TOCTOU) race condition, as
rain->buf_len is concurrently accessed and modified in the work
handler rain_irq_work_handler() under the same lock.
Multiple interrupt invocations can race, with each reading buf_len
before it becomes full and then proceeding. This can lead to both
interrupts attempting to write to the buffer, incrementing buf_len
beyond its capacity (DATA_SIZE) and causing a buffer overflow.
Fix this bug by moving the spin_lock() to before the buffer full
check. This ensures that the check and the subsequent buffer modification
are performed atomically, preventing the race condition. An corresponding
spin_unlock() is added to the overflow path to correctly release the
lock.
This possible bug was found by an experimental static analysis tool
developed by our team. |
In the Linux kernel, the following vulnerability has been resolved:
media: mt9m114: Fix deadlock in get_frame_interval/set_frame_interval
Getting / Setting the frame interval using the V4L2 subdev pad ops
get_frame_interval/set_frame_interval causes a deadlock, as the
subdev state is locked in the [1] but also in the driver itself.
In [2] it's described that the caller is responsible to acquire and
release the lock in this case. Therefore, acquiring the lock in the
driver is wrong.
Remove the lock acquisitions/releases from mt9m114_ifp_get_frame_interval()
and mt9m114_ifp_set_frame_interval().
[1] drivers/media/v4l2-core/v4l2-subdev.c - line 1129
[2] Documentation/driver-api/media/v4l2-subdev.rst |
In the Linux kernel, the following vulnerability has been resolved:
media: ivsc: Fix crash at shutdown due to missing mei_cldev_disable() calls
Both the ACE and CSI driver are missing a mei_cldev_disable() call in
their remove() function.
This causes the mei_cl client to stay part of the mei_device->file_list
list even though its memory is freed by mei_cl_bus_dev_release() calling
kfree(cldev->cl).
This leads to a use-after-free when mei_vsc_remove() runs mei_stop()
which first removes all mei bus devices calling mei_ace_remove() and
mei_csi_remove() followed by mei_cl_bus_dev_release() and then calls
mei_cl_all_disconnect() which walks over mei_device->file_list dereferecing
the just freed cldev->cl.
And mei_vsc_remove() it self is run at shutdown because of the
platform_device_unregister(tp->pdev) in vsc_tp_shutdown()
When building a kernel with KASAN this leads to the following KASAN report:
[ 106.634504] ==================================================================
[ 106.634623] BUG: KASAN: slab-use-after-free in mei_cl_set_disconnected (drivers/misc/mei/client.c:783) mei
[ 106.634683] Read of size 4 at addr ffff88819cb62018 by task systemd-shutdow/1
[ 106.634729]
[ 106.634767] Tainted: [E]=UNSIGNED_MODULE
[ 106.634770] Hardware name: Dell Inc. XPS 16 9640/09CK4V, BIOS 1.12.0 02/10/2025
[ 106.634773] Call Trace:
[ 106.634777] <TASK>
...
[ 106.634871] kasan_report (mm/kasan/report.c:221 mm/kasan/report.c:636)
[ 106.634901] mei_cl_set_disconnected (drivers/misc/mei/client.c:783) mei
[ 106.634921] mei_cl_all_disconnect (drivers/misc/mei/client.c:2165 (discriminator 4)) mei
[ 106.634941] mei_reset (drivers/misc/mei/init.c:163) mei
...
[ 106.635042] mei_stop (drivers/misc/mei/init.c:348) mei
[ 106.635062] mei_vsc_remove (drivers/misc/mei/mei_dev.h:784 drivers/misc/mei/platform-vsc.c:393) mei_vsc
[ 106.635066] platform_remove (drivers/base/platform.c:1424)
Add the missing mei_cldev_disable() calls so that the mei_cl gets removed
from mei_device->file_list before it is freed to fix this. |
In the Linux kernel, the following vulnerability has been resolved:
media: venus: Add a check for packet size after reading from shared memory
Add a check to ensure that the packet size does not exceed the number of
available words after reading the packet header from shared memory. This
ensures that the size provided by the firmware is safe to process and
prevent potential out-of-bounds memory access. |
In the Linux kernel, the following vulnerability has been resolved:
media: venus: protect against spurious interrupts during probe
Make sure the interrupt handler is initialized before the interrupt is
registered.
If the IRQ is registered before hfi_create(), it's possible that an
interrupt fires before the handler setup is complete, leading to a NULL
dereference.
This error condition has been observed during system boot on Rb3Gen2. |
In the Linux kernel, the following vulnerability has been resolved:
media: iris: Fix NULL pointer dereference
A warning reported by smatch indicated a possible null pointer
dereference where one of the arguments to API
"iris_hfi_gen2_handle_system_error" could sometimes be null.
To fix this, add a check to validate that the argument passed is not
null before accessing its members. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: check if hubbub is NULL in debugfs/amdgpu_dm_capabilities
HUBBUB structure is not initialized on DCE hardware, so check if it is NULL
to avoid null dereference while accessing amdgpu_dm_capabilities file in
debugfs. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Destroy KFD debugfs after destroy KFD wq
Since KFD proc content was moved to kernel debugfs, we can't destroy KFD
debugfs before kfd_process_destroy_wq. Move kfd_process_destroy_wq prior
to kfd_debugfs_fini to fix a kernel NULL pointer problem. It happens
when /sys/kernel/debug/kfd was already destroyed in kfd_debugfs_fini but
kfd_process_destroy_wq calls kfd_debugfs_remove_process. This line
debugfs_remove_recursive(entry->proc_dentry);
tries to remove /sys/kernel/debug/kfd/proc/<pid> while
/sys/kernel/debug/kfd is already gone. It hangs the kernel by kernel
NULL pointer.
(cherry picked from commit 0333052d90683d88531558dcfdbf2525cc37c233) |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: fix a Null pointer dereference vulnerability
[Why]
A null pointer dereference vulnerability exists in the AMD display driver's
(DC module) cleanup function dc_destruct().
When display control context (dc->ctx) construction fails
(due to memory allocation failure), this pointer remains NULL.
During subsequent error handling when dc_destruct() is called,
there's no NULL check before dereferencing the perf_trace member
(dc->ctx->perf_trace), causing a kernel null pointer dereference crash.
[How]
Check if dc->ctx is non-NULL before dereferencing.
(Updated commit text and removed unnecessary error message)
(cherry picked from commit 9dd8e2ba268c636c240a918e0a31e6feaee19404) |
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Fix stack protector issue in send_ipi_data()
Function kvm_io_bus_read() is called in function send_ipi_data(), buffer
size of parameter *val should be at least 8 bytes. Since some emulation
functions like loongarch_ipi_readl() and kvm_eiointc_read() will write
the buffer *val with 8 bytes signed extension regardless parameter len.
Otherwise there will be buffer overflow issue when CONFIG_STACKPROTECTOR
is enabled. The bug report is shown as follows:
Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: send_ipi_data+0x194/0x1a0 [kvm]
CPU: 11 UID: 107 PID: 2692 Comm: CPU 0/KVM Not tainted 6.17.0-rc1+ #102 PREEMPT(full)
Stack : 9000000005901568 0000000000000000 9000000003af371c 900000013c68c000
900000013c68f850 900000013c68f858 0000000000000000 900000013c68f998
900000013c68f990 900000013c68f990 900000013c68f6c0 fffffffffffdb058
fffffffffffdb0e0 900000013c68f858 911e1d4d39cf0ec2 9000000105657a00
0000000000000001 fffffffffffffffe 0000000000000578 282049464555206e
6f73676e6f6f4c20 0000000000000001 00000000086b4000 0000000000000000
0000000000000000 0000000000000000 9000000005709968 90000000058f9000
900000013c68fa68 900000013c68fab4 90000000029279f0 900000010153f940
900000010001f360 0000000000000000 9000000003af3734 000000004390000c
00000000000000b0 0000000000000004 0000000000000000 0000000000071c1d
...
Call Trace:
[<9000000003af3734>] show_stack+0x5c/0x180
[<9000000003aed168>] dump_stack_lvl+0x6c/0x9c
[<9000000003ad0ab0>] vpanic+0x108/0x2c4
[<9000000003ad0ca8>] panic+0x3c/0x40
[<9000000004eb0a1c>] __stack_chk_fail+0x14/0x18
[<ffff8000023473f8>] send_ipi_data+0x190/0x1a0 [kvm]
[<ffff8000023313e4>] __kvm_io_bus_write+0xa4/0xe8 [kvm]
[<ffff80000233147c>] kvm_io_bus_write+0x54/0x90 [kvm]
[<ffff80000233f9f8>] kvm_emu_iocsr+0x180/0x310 [kvm]
[<ffff80000233fe08>] kvm_handle_gspr+0x280/0x478 [kvm]
[<ffff8000023443e8>] kvm_handle_exit+0xc0/0x130 [kvm] |
In the Linux kernel, the following vulnerability has been resolved:
net, hsr: reject HSR frame if skb can't hold tag
Receiving HSR frame with insufficient space to hold HSR tag in the skb
can result in a crash (kernel BUG):
[ 45.390915] skbuff: skb_under_panic: text:ffffffff86f32cac len:26 put:14 head:ffff888042418000 data:ffff888042417ff4 tail:0xe end:0x180 dev:bridge_slave_1
[ 45.392559] ------------[ cut here ]------------
[ 45.392912] kernel BUG at net/core/skbuff.c:211!
[ 45.393276] Oops: invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN NOPTI
[ 45.393809] CPU: 1 UID: 0 PID: 2496 Comm: reproducer Not tainted 6.15.0 #12 PREEMPT(undef)
[ 45.394433] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[ 45.395273] RIP: 0010:skb_panic+0x15b/0x1d0
<snip registers, remove unreliable trace>
[ 45.402911] Call Trace:
[ 45.403105] <IRQ>
[ 45.404470] skb_push+0xcd/0xf0
[ 45.404726] br_dev_queue_push_xmit+0x7c/0x6c0
[ 45.406513] br_forward_finish+0x128/0x260
[ 45.408483] __br_forward+0x42d/0x590
[ 45.409464] maybe_deliver+0x2eb/0x420
[ 45.409763] br_flood+0x174/0x4a0
[ 45.410030] br_handle_frame_finish+0xc7c/0x1bc0
[ 45.411618] br_handle_frame+0xac3/0x1230
[ 45.413674] __netif_receive_skb_core.constprop.0+0x808/0x3df0
[ 45.422966] __netif_receive_skb_one_core+0xb4/0x1f0
[ 45.424478] __netif_receive_skb+0x22/0x170
[ 45.424806] process_backlog+0x242/0x6d0
[ 45.425116] __napi_poll+0xbb/0x630
[ 45.425394] net_rx_action+0x4d1/0xcc0
[ 45.427613] handle_softirqs+0x1a4/0x580
[ 45.427926] do_softirq+0x74/0x90
[ 45.428196] </IRQ>
This issue was found by syzkaller.
The panic happens in br_dev_queue_push_xmit() once it receives a
corrupted skb with ETH header already pushed in linear data. When it
attempts the skb_push() call, there's not enough headroom and
skb_push() panics.
The corrupted skb is put on the queue by HSR layer, which makes a
sequence of unintended transformations when it receives a specific
corrupted HSR frame (with incomplete TAG).
Fix it by dropping and consuming frames that are not long enough to
contain both ethernet and hsr headers.
Alternative fix would be to check for enough headroom before skb_push()
in br_dev_queue_push_xmit().
In the reproducer, this is injected via AF_PACKET, but I don't easily
see why it couldn't be sent over the wire from adjacent network.
Further Details:
In the reproducer, the following network interface chain is set up:
┌────────────────┐ ┌────────────────┐
│ veth0_to_hsr ├───┤ hsr_slave0 ┼───┐
└────────────────┘ └────────────────┘ │
│ ┌──────┐
├─┤ hsr0 ├───┐
│ └──────┘ │
┌────────────────┐ ┌────────────────┐ │ │┌────────┐
│ veth1_to_hsr ┼───┤ hsr_slave1 ├───┘ └┤ │
└────────────────┘ └────────────────┘ ┌┼ bridge │
││ │
│└────────┘
│
┌───────┐ │
│ ... ├──────┘
└───────┘
To trigger the events leading up to crash, reproducer sends a corrupted
HSR fr
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: sr: Fix MAC comparison to be constant-time
To prevent timing attacks, MACs need to be compared in constant time.
Use the appropriate helper function for this. |
In the Linux kernel, the following vulnerability has been resolved:
ACPI: pfr_update: Fix the driver update version check
The security-version-number check should be used rather
than the runtime version check for driver updates.
Otherwise, the firmware update would fail when the update binary had
a lower runtime version number than the current one.
[ rjw: Changelog edits ] |
In the Linux kernel, the following vulnerability has been resolved:
mm/damon/ops-common: ignore migration request to invalid nodes
damon_migrate_pages() tries migration even if the target node is invalid.
If users mistakenly make such invalid requests via
DAMOS_MIGRATE_{HOT,COLD} action, the below kernel BUG can happen.
[ 7831.883495] BUG: unable to handle page fault for address: 0000000000001f48
[ 7831.884160] #PF: supervisor read access in kernel mode
[ 7831.884681] #PF: error_code(0x0000) - not-present page
[ 7831.885203] PGD 0 P4D 0
[ 7831.885468] Oops: Oops: 0000 [#1] SMP PTI
[ 7831.885852] CPU: 31 UID: 0 PID: 94202 Comm: kdamond.0 Not tainted 6.16.0-rc5-mm-new-damon+ #93 PREEMPT(voluntary)
[ 7831.886913] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.el9 04/01/2014
[ 7831.887777] RIP: 0010:__alloc_frozen_pages_noprof (include/linux/mmzone.h:1724 include/linux/mmzone.h:1750 mm/page_alloc.c:4936 mm/page_alloc.c:5137)
[...]
[ 7831.895953] Call Trace:
[ 7831.896195] <TASK>
[ 7831.896397] __folio_alloc_noprof (mm/page_alloc.c:5183 mm/page_alloc.c:5192)
[ 7831.896787] migrate_pages_batch (mm/migrate.c:1189 mm/migrate.c:1851)
[ 7831.897228] ? __pfx_alloc_migration_target (mm/migrate.c:2137)
[ 7831.897735] migrate_pages (mm/migrate.c:2078)
[ 7831.898141] ? __pfx_alloc_migration_target (mm/migrate.c:2137)
[ 7831.898664] damon_migrate_folio_list (mm/damon/ops-common.c:321 mm/damon/ops-common.c:354)
[ 7831.899140] damon_migrate_pages (mm/damon/ops-common.c:405)
[...]
Add a target node validity check in damon_migrate_pages(). The validity
check is stolen from that of do_pages_move(), which is being used for the
move_pages() system call. |