Total
3031 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2021-21901 | 1 Garrett | 1 Ic Module Cma | 2024-08-03 | 8.8 High |
A stack-based buffer overflow vulnerability exists in the CMA check_udp_crc function of Garrett Metal Detectors’ iC Module CMA Version 5.0. A specially-crafted packet can lead to a stack-based buffer overflow during a call to memcpy. An attacker can send a malicious packet to trigger this vulnerability. | ||||
CVE-2021-21827 | 1 Att | 1 Xmill | 2024-08-03 | 9.8 Critical |
A heap-based buffer overflow vulnerability exists in the XML Decompression DecodeTreeBlock functionality of AT&T Labs Xmill 0.7. Within `DecodeTreeBlock` which is called during the decompression of an XMI file, a UINT32 is loaded from the file and used as trusted input as the length of a buffer. An attacker can provide a malicious file to trigger this vulnerability. | ||||
CVE-2021-21808 | 1 Accusoft | 1 Imagegear | 2024-08-03 | 8.8 High |
A memory corruption vulnerability exists in the PNG png_palette_process functionality of Accusoft ImageGear 19.9. A specially crafted malformed file can lead to a heap buffer overflow. An attacker can provide malicious inputs to trigger this vulnerability. | ||||
CVE-2021-21828 | 1 Att | 1 Xmill | 2024-08-03 | 9.8 Critical |
A heap-based buffer overflow vulnerability exists in the XML Decompression DecodeTreeBlock functionality of AT&T Labs Xmill 0.7. In the default case of DecodeTreeBlock a label is created via CurPath::AddLabel in order to track the label for later reference. An attacker can provide a malicious file to trigger this vulnerability. | ||||
CVE-2021-21826 | 1 Att | 1 Xmill | 2024-08-03 | 9.8 Critical |
A heap-based buffer overflow vulnerability exists in the XML Decompression DecodeTreeBlock functionality of AT&T Labs Xmill 0.7. Within `DecodeTreeBlock` which is called during the decompression of an XMI file, a UINT32 is loaded from the file and used as trusted input as the length of a buffer. An attacker can provide a malicious file to trigger this vulnerability. | ||||
CVE-2021-21309 | 2 Redhat, Redislabs | 2 Acm, Redis | 2024-08-03 | 5.4 Medium |
Redis is an open-source, in-memory database that persists on disk. In affected versions of Redis an integer overflow bug in 32-bit Redis version 4.0 or newer could be exploited to corrupt the heap and potentially result with remote code execution. Redis 4.0 or newer uses a configurable limit for the maximum supported bulk input size. By default, it is 512MB which is a safe value for all platforms. If the limit is significantly increased, receiving a large request from a client may trigger several integer overflow scenarios, which would result with buffer overflow and heap corruption. We believe this could in certain conditions be exploited for remote code execution. By default, authenticated Redis users have access to all configuration parameters and can therefore use the “CONFIG SET proto-max-bulk-len” to change the safe default, making the system vulnerable. **This problem only affects 32-bit Redis (on a 32-bit system, or as a 32-bit executable running on a 64-bit system).** The problem is fixed in version 6.2, and the fix is back ported to 6.0.11 and 5.0.11. Make sure you use one of these versions if you are running 32-bit Redis. An additional workaround to mitigate the problem without patching the redis-server executable is to prevent clients from directly executing `CONFIG SET`: Using Redis 6.0 or newer, ACL configuration can be used to block the command. Using older versions, the `rename-command` configuration directive can be used to rename the command to a random string unknown to users, rendering it inaccessible. Please note that this workaround may have an additional impact on users or operational systems that expect `CONFIG SET` to behave in certain ways. | ||||
CVE-2021-21281 | 1 Contiki-ng | 1 Contiki-ng | 2024-08-03 | 7 High |
Contiki-NG is an open-source, cross-platform operating system for internet of things devices. A buffer overflow vulnerability exists in Contiki-NG versions prior to 4.6. After establishing a TCP socket using the tcp-socket library, it is possible for the remote end to send a packet with a data offset that is unvalidated. The problem has been patched in Contiki-NG 4.6. Users can apply the patch for this vulnerability out-of-band as a workaround. | ||||
CVE-2021-21282 | 1 Contiki-ng | 1 Contiki-ng | 2024-08-03 | 8.6 High |
Contiki-NG is an open-source, cross-platform operating system for internet of things devices. In versions prior to 4.5, buffer overflow can be triggered by an input packet when using either of Contiki-NG's two RPL implementations in source-routing mode. The problem has been patched in Contiki-NG 4.5. Users can apply the patch for this vulnerability out-of-band as a workaround. | ||||
CVE-2021-20852 | 1 Elecom | 4 Wrh-733gbk, Wrh-733gbk Firmware, Wrh-733gwh and 1 more | 2024-08-03 | 6.8 Medium |
Buffer overflow vulnerability in ELECOM LAN routers (WRH-733GBK firmware v1.02.9 and prior and WRH-733GWH firmware v1.02.9 and prior) allows a network-adjacent attacker with an administrator privilege to execute an arbitrary OS command via unspecified vectors. | ||||
CVE-2021-20703 | 1 Nec | 4 Clusterpro X, Clusterpro X Singleserversafe, Expresscluster X and 1 more | 2024-08-03 | 9.8 Critical |
Buffer overflow vulnerability in the Transaction Server CLUSTERPRO X 4.3 for Windows and earlier, EXPRESSCLUSTER X 4.3 for Windows and earlier, CLUSTERPRO X 4.3 SingleServerSafe for Windows and earlier, EXPRESSCLUSTER X 4.3 SingleServerSafe for Windows and earlier allows attacker to remote code execution via a network. | ||||
CVE-2021-20704 | 1 Nec | 4 Clusterpro X, Clusterpro X Singleserversafe, Expresscluster X and 1 more | 2024-08-03 | 9.8 Critical |
Buffer overflow vulnerability in the compatible API with previous versions CLUSTERPRO X 4.3 for Windows and earlier, EXPRESSCLUSTER X 4.3 for Windows and earlier, CLUSTERPRO X 4.3 SingleServerSafe for Windows and earlier, EXPRESSCLUSTER X 4.3 SingleServerSafe for Windows and earlier allows attacker to remote code execution via a network. | ||||
CVE-2021-20699 | 1 Sharp-nec-displays | 68 C431, C431 Firmware, C501 and 65 more | 2024-08-03 | 9.8 Critical |
Sharp NEC Displays ((UN462A R1.300 and prior to it, UN462VA R1.300 and prior to it, UN492S R1.300 and prior to it, UN492VS R1.300 and prior to it, UN552A R1.300 and prior to it, UN552S R1.300 and prior to it, UN552VS R1.300 and prior to it, UN552 R1.300 and prior to it, UN552V R1.300 and prior to it, UX552S R1.300 and prior to it, UX552 R1.300 and prior to it, V864Q R2.000 and prior to it, C861Q R2.000 and prior to it, P754Q R2.000 and prior to it, V754Q R2.000 and prior to it, C751Q R2.000 and prior to it, V984Q R2.000 and prior to it, C981Q R2.000 and prior to it, P654Q R2.000 and prior to it, V654Q R2.000 and prior to it, C651Q R2.000 and prior to it, V554Q R2.000 and prior to it, P404 R3.200 and prior to it, P484 R3.200 and prior to it, P554 R3.200 and prior to it, V404 R3.200 and prior to it, V484 R3.200 and prior to it, V554 R3.200 and prior to it, V404-T R3.200 and prior to it, V484-T R3.200 and prior to it, V554-T R3.200 and prior to it, C501 R2.000 and prior to it, C551 R2.000 and prior to it, C431 R2.000 and prior to it) allows an attacker a buffer overflow and to execute remote code by sending long parameters that contains specific characters in http request. | ||||
CVE-2021-20702 | 1 Nec | 4 Clusterpro X, Clusterpro X Singleserversafe, Expresscluster X and 1 more | 2024-08-03 | 9.8 Critical |
Buffer overflow vulnerability in the Transaction Server CLUSTERPRO X 4.3 for Windows and earlier, EXPRESSCLUSTER X 4.3 for Windows and earlier, CLUSTERPRO X 4.3 SingleServerSafe for Windows and earlier, EXPRESSCLUSTER X 4.3 SingleServerSafe for Windows and earlier allows attacker to remote code execution via a network. | ||||
CVE-2021-20700 | 1 Nec | 4 Clusterpro X, Clusterpro X Singleserversafe, Expresscluster X and 1 more | 2024-08-03 | 9.8 Critical |
Buffer overflow vulnerability in the Disk Agent CLUSTERPRO X 4.3 for Windows and earlier, EXPRESSCLUSTER X 4.3 for Windows and earlier, CLUSTERPRO X 4.3 SingleServerSafe for Windows and earlier, EXPRESSCLUSTER X 4.3 SingleServerSafe for Windows and earlier allows attacker to remote code execution via a network. | ||||
CVE-2021-20701 | 1 Nec | 4 Clusterpro X, Clusterpro X Singleserversafe, Expresscluster X and 1 more | 2024-08-03 | 9.8 Critical |
Buffer overflow vulnerability in the Disk Agent CLUSTERPRO X 4.3 for Windows and earlier, EXPRESSCLUSTER X 4.3 for Windows and earlier, CLUSTERPRO X 4.3 SingleServerSafe for Windows and earlier, EXPRESSCLUSTER X 4.3 SingleServerSafe for Windows and earlier allows attacker to remote code execution via a network. | ||||
CVE-2021-20640 | 1 Logitech | 2 Lan-w300n\/pgrb, Lan-w300n\/pgrb Firmware | 2024-08-03 | 6.8 Medium |
Buffer overflow vulnerability in LOGITEC LAN-W300N/PGRB allows an attacker with administrative privilege to execute an arbitrary OS command via unspecified vectors. | ||||
CVE-2021-20236 | 3 Fedoraproject, Redhat, Zeromq | 4 Fedora, Ceph Storage, Enterprise Linux and 1 more | 2024-08-03 | 9.8 Critical |
A flaw was found in the ZeroMQ server in versions before 4.3.3. This flaw allows a malicious client to cause a stack buffer overflow on the server by sending crafted topic subscription requests and then unsubscribing. The highest threat from this vulnerability is to confidentiality, integrity, as well as system availability. | ||||
CVE-2021-20235 | 1 Zeromq | 1 Libzmq | 2024-08-03 | 8.1 High |
There's a flaw in the zeromq server in versions before 4.3.3 in src/decoder_allocators.hpp. The decoder static allocator could have its sized changed, but the buffer would remain the same as it is a static buffer. A remote, unauthenticated attacker who sends a crafted request to the zeromq server could trigger a buffer overflow WRITE of arbitrary data if CURVE/ZAP authentication is not enabled. The greatest impact of this flaw is to application availability, data integrity, and confidentiality. | ||||
CVE-2021-20166 | 1 Netgear | 2 Rax43, Rax43 Firmware | 2024-08-03 | 8.8 High |
Netgear RAX43 version 1.0.3.96 contains a buffer overrun vulnerability. The URL parsing functionality in the cgi-bin endpoint of the router containers a buffer overrun issue that can redirection control flow of the applicaiton. | ||||
CVE-2021-20027 | 1 Sonicwall | 59 Nsa 2650, Nsa 2700, Nsa 3650 and 56 more | 2024-08-03 | 7.5 High |
A buffer overflow vulnerability in SonicOS allows a remote attacker to cause a Denial of Service (DoS) by sending a specially crafted request. This vulnerability affects SonicOS Gen5, Gen6, Gen7 platforms, and SonicOSv virtual firewalls. |