Search

Search Results (325338 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-15219 2025-12-31 3.5 Low
A security vulnerability has been detected in SohuTV CacheCloud up to 3.2.0. Affected by this issue is the function doMachineList/doPodList of the file src/main/java/com/sohu/cache/web/controller/MachineManageController.java. The manipulation leads to cross site scripting. The attack may be initiated remotely. The exploit has been disclosed publicly and may be used. The project was informed of the problem early through an issue report but has not responded yet.
CVE-2025-15247 2025-12-31 7.3 High
A vulnerability was identified in gmg137 snap7-rs up to 153d3e8c16decd7271e2a5b2e3da4d6f68589424. Affected by this issue is the function snap7_rs::client::S7Client::download of the file client.rs. Such manipulation leads to heap-based buffer overflow. The attack can be executed remotely. The exploit is publicly available and might be used. This product implements a rolling release for ongoing delivery, which means version information for affected or updated releases is unavailable. The project was informed of the problem early through an issue report but has not responded yet.
CVE-2023-54198 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tty: fix out-of-bounds access in tty_driver_lookup_tty() When specifying an invalid console= device like console=tty3270, tty_driver_lookup_tty() returns the tty struct without checking whether index is a valid number. To reproduce: qemu-system-x86_64 -enable-kvm -nographic -serial mon:stdio \ -kernel ../linux-build-x86/arch/x86/boot/bzImage \ -append "console=ttyS0 console=tty3270" This crashes with: [ 0.770599] BUG: kernel NULL pointer dereference, address: 00000000000000ef [ 0.771265] #PF: supervisor read access in kernel mode [ 0.771773] #PF: error_code(0x0000) - not-present page [ 0.772609] Oops: 0000 [#1] PREEMPT SMP PTI [ 0.774878] RIP: 0010:tty_open+0x268/0x6f0 [ 0.784013] chrdev_open+0xbd/0x230 [ 0.784444] ? cdev_device_add+0x80/0x80 [ 0.784920] do_dentry_open+0x1e0/0x410 [ 0.785389] path_openat+0xca9/0x1050 [ 0.785813] do_filp_open+0xaa/0x150 [ 0.786240] file_open_name+0x133/0x1b0 [ 0.786746] filp_open+0x27/0x50 [ 0.787244] console_on_rootfs+0x14/0x4d [ 0.787800] kernel_init_freeable+0x1e4/0x20d [ 0.788383] ? rest_init+0xc0/0xc0 [ 0.788881] kernel_init+0x11/0x120 [ 0.789356] ret_from_fork+0x22/0x30
CVE-2023-54176 1 Linux 1 Linux Kernel 2025-12-31 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mptcp: stricter state check in mptcp_worker As reported by Christoph, the mptcp protocol can run the worker when the relevant msk socket is in an unexpected state: connect() // incoming reset + fastclose // the mptcp worker is scheduled mptcp_disconnect() // msk is now CLOSED listen() mptcp_worker() Leading to the following splat: divide error: 0000 [#1] PREEMPT SMP CPU: 1 PID: 21 Comm: kworker/1:0 Not tainted 6.3.0-rc1-gde5e8fd0123c #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014 Workqueue: events mptcp_worker RIP: 0010:__tcp_select_window+0x22c/0x4b0 net/ipv4/tcp_output.c:3018 RSP: 0018:ffffc900000b3c98 EFLAGS: 00010293 RAX: 000000000000ffd7 RBX: 000000000000ffd7 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff8214ce97 RDI: 0000000000000004 RBP: 000000000000ffd7 R08: 0000000000000004 R09: 0000000000010000 R10: 000000000000ffd7 R11: ffff888005afa148 R12: 000000000000ffd7 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88803ed00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000405270 CR3: 000000003011e006 CR4: 0000000000370ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> tcp_select_window net/ipv4/tcp_output.c:262 [inline] __tcp_transmit_skb+0x356/0x1280 net/ipv4/tcp_output.c:1345 tcp_transmit_skb net/ipv4/tcp_output.c:1417 [inline] tcp_send_active_reset+0x13e/0x320 net/ipv4/tcp_output.c:3459 mptcp_check_fastclose net/mptcp/protocol.c:2530 [inline] mptcp_worker+0x6c7/0x800 net/mptcp/protocol.c:2705 process_one_work+0x3bd/0x950 kernel/workqueue.c:2390 worker_thread+0x5b/0x610 kernel/workqueue.c:2537 kthread+0x138/0x170 kernel/kthread.c:376 ret_from_fork+0x2c/0x50 arch/x86/entry/entry_64.S:308 </TASK> This change addresses the issue explicitly checking for bad states before running the mptcp worker.
CVE-2023-54171 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing: Fix memory leak of iter->temp when reading trace_pipe kmemleak reports: unreferenced object 0xffff88814d14e200 (size 256): comm "cat", pid 336, jiffies 4294871818 (age 779.490s) hex dump (first 32 bytes): 04 00 01 03 00 00 00 00 08 00 00 00 00 00 00 00 ................ 0c d8 c8 9b ff ff ff ff 04 5a ca 9b ff ff ff ff .........Z...... backtrace: [<ffffffff9bdff18f>] __kmalloc+0x4f/0x140 [<ffffffff9bc9238b>] trace_find_next_entry+0xbb/0x1d0 [<ffffffff9bc9caef>] trace_print_lat_context+0xaf/0x4e0 [<ffffffff9bc94490>] print_trace_line+0x3e0/0x950 [<ffffffff9bc95499>] tracing_read_pipe+0x2d9/0x5a0 [<ffffffff9bf03a43>] vfs_read+0x143/0x520 [<ffffffff9bf04c2d>] ksys_read+0xbd/0x160 [<ffffffff9d0f0edf>] do_syscall_64+0x3f/0x90 [<ffffffff9d2000aa>] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 when reading file 'trace_pipe', 'iter->temp' is allocated or relocated in trace_find_next_entry() but not freed before 'trace_pipe' is closed. To fix it, free 'iter->temp' in tracing_release_pipe().
CVE-2022-50883 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Prevent decl_tag from being referenced in func_proto arg Syzkaller managed to hit another decl_tag issue: btf_func_proto_check kernel/bpf/btf.c:4506 [inline] btf_check_all_types kernel/bpf/btf.c:4734 [inline] btf_parse_type_sec+0x1175/0x1980 kernel/bpf/btf.c:4763 btf_parse kernel/bpf/btf.c:5042 [inline] btf_new_fd+0x65a/0xb00 kernel/bpf/btf.c:6709 bpf_btf_load+0x6f/0x90 kernel/bpf/syscall.c:4342 __sys_bpf+0x50a/0x6c0 kernel/bpf/syscall.c:5034 __do_sys_bpf kernel/bpf/syscall.c:5093 [inline] __se_sys_bpf kernel/bpf/syscall.c:5091 [inline] __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5091 do_syscall_64+0x54/0x70 arch/x86/entry/common.c:48 This seems similar to commit ea68376c8bed ("bpf: prevent decl_tag from being referenced in func_proto") but for the argument.
CVE-2023-54203 1 Linux 1 Linux Kernel 2025-12-31 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix slab-out-of-bounds in init_smb2_rsp_hdr When smb1 mount fails, KASAN detect slab-out-of-bounds in init_smb2_rsp_hdr like the following one. For smb1 negotiate(56bytes) , init_smb2_rsp_hdr() for smb2 is called. The issue occurs while handling smb1 negotiate as smb2 server operations. Add smb server operations for smb1 (get_cmd_val, init_rsp_hdr, allocate_rsp_buf, check_user_session) to handle smb1 negotiate so that smb2 server operation does not handle it. [ 411.400423] CIFS: VFS: Use of the less secure dialect vers=1.0 is not recommended unless required for access to very old servers [ 411.400452] CIFS: Attempting to mount \\192.168.45.139\homes [ 411.479312] ksmbd: init_smb2_rsp_hdr : 492 [ 411.479323] ================================================================== [ 411.479327] BUG: KASAN: slab-out-of-bounds in init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd] [ 411.479369] Read of size 16 at addr ffff888488ed0734 by task kworker/14:1/199 [ 411.479379] CPU: 14 PID: 199 Comm: kworker/14:1 Tainted: G OE 6.1.21 #3 [ 411.479386] Hardware name: ASUSTeK COMPUTER INC. Z10PA-D8 Series/Z10PA-D8 Series, BIOS 3801 08/23/2019 [ 411.479390] Workqueue: ksmbd-io handle_ksmbd_work [ksmbd] [ 411.479425] Call Trace: [ 411.479428] <TASK> [ 411.479432] dump_stack_lvl+0x49/0x63 [ 411.479444] print_report+0x171/0x4a8 [ 411.479452] ? kasan_complete_mode_report_info+0x3c/0x200 [ 411.479463] ? init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd] [ 411.479497] kasan_report+0xb4/0x130 [ 411.479503] ? init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd] [ 411.479537] kasan_check_range+0x149/0x1e0 [ 411.479543] memcpy+0x24/0x70 [ 411.479550] init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd] [ 411.479585] handle_ksmbd_work+0x109/0x760 [ksmbd] [ 411.479616] ? _raw_spin_unlock_irqrestore+0x50/0x50 [ 411.479624] ? smb3_encrypt_resp+0x340/0x340 [ksmbd] [ 411.479656] process_one_work+0x49c/0x790 [ 411.479667] worker_thread+0x2b1/0x6e0 [ 411.479674] ? process_one_work+0x790/0x790 [ 411.479680] kthread+0x177/0x1b0 [ 411.479686] ? kthread_complete_and_exit+0x30/0x30 [ 411.479692] ret_from_fork+0x22/0x30 [ 411.479702] </TASK>
CVE-2023-54181 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix issue in verifying allow_ptr_leaks After we converted the capabilities of our networking-bpf program from cap_sys_admin to cap_net_admin+cap_bpf, our networking-bpf program failed to start. Because it failed the bpf verifier, and the error log is "R3 pointer comparison prohibited". A simple reproducer as follows, SEC("cls-ingress") int ingress(struct __sk_buff *skb) { struct iphdr *iph = (void *)(long)skb->data + sizeof(struct ethhdr); if ((long)(iph + 1) > (long)skb->data_end) return TC_ACT_STOLEN; return TC_ACT_OK; } Per discussion with Yonghong and Alexei [1], comparison of two packet pointers is not a pointer leak. This patch fixes it. Our local kernel is 6.1.y and we expect this fix to be backported to 6.1.y, so stable is CCed. [1]. https://lore.kernel.org/bpf/CAADnVQ+Nmspr7Si+pxWn8zkE7hX-7s93ugwC+94aXSy4uQ9vBg@mail.gmail.com/
CVE-2023-54173 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Disable preemption in bpf_event_output We received report [1] of kernel crash, which is caused by using nesting protection without disabled preemption. The bpf_event_output can be called by programs executed by bpf_prog_run_array_cg function that disabled migration but keeps preemption enabled. This can cause task to be preempted by another one inside the nesting protection and lead eventually to two tasks using same perf_sample_data buffer and cause crashes like: BUG: kernel NULL pointer dereference, address: 0000000000000001 #PF: supervisor instruction fetch in kernel mode #PF: error_code(0x0010) - not-present page ... ? perf_output_sample+0x12a/0x9a0 ? finish_task_switch.isra.0+0x81/0x280 ? perf_event_output+0x66/0xa0 ? bpf_event_output+0x13a/0x190 ? bpf_event_output_data+0x22/0x40 ? bpf_prog_dfc84bbde731b257_cil_sock4_connect+0x40a/0xacb ? xa_load+0x87/0xe0 ? __cgroup_bpf_run_filter_sock_addr+0xc1/0x1a0 ? release_sock+0x3e/0x90 ? sk_setsockopt+0x1a1/0x12f0 ? udp_pre_connect+0x36/0x50 ? inet_dgram_connect+0x93/0xa0 ? __sys_connect+0xb4/0xe0 ? udp_setsockopt+0x27/0x40 ? __pfx_udp_push_pending_frames+0x10/0x10 ? __sys_setsockopt+0xdf/0x1a0 ? __x64_sys_connect+0xf/0x20 ? do_syscall_64+0x3a/0x90 ? entry_SYSCALL_64_after_hwframe+0x72/0xdc Fixing this by disabling preemption in bpf_event_output. [1] https://github.com/cilium/cilium/issues/26756
CVE-2022-50850 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: ipr: Fix WARNING in ipr_init() ipr_init() will not call unregister_reboot_notifier() when pci_register_driver() fails, which causes a WARNING. Call unregister_reboot_notifier() when pci_register_driver() fails. notifier callback ipr_halt [ipr] already registered WARNING: CPU: 3 PID: 299 at kernel/notifier.c:29 notifier_chain_register+0x16d/0x230 Modules linked in: ipr(+) xhci_pci_renesas xhci_hcd ehci_hcd usbcore led_class gpu_sched drm_buddy video wmi drm_ttm_helper ttm drm_display_helper drm_kms_helper drm drm_panel_orientation_quirks agpgart cfbft CPU: 3 PID: 299 Comm: modprobe Tainted: G W 6.1.0-rc1-00190-g39508d23b672-dirty #332 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014 RIP: 0010:notifier_chain_register+0x16d/0x230 Call Trace: <TASK> __blocking_notifier_chain_register+0x73/0xb0 ipr_init+0x30/0x1000 [ipr] do_one_initcall+0xdb/0x480 do_init_module+0x1cf/0x680 load_module+0x6a50/0x70a0 __do_sys_finit_module+0x12f/0x1c0 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVE-2023-54211 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing: Fix warning in trace_buffered_event_disable() Warning happened in trace_buffered_event_disable() at WARN_ON_ONCE(!trace_buffered_event_ref) Call Trace: ? __warn+0xa5/0x1b0 ? trace_buffered_event_disable+0x189/0x1b0 __ftrace_event_enable_disable+0x19e/0x3e0 free_probe_data+0x3b/0xa0 unregister_ftrace_function_probe_func+0x6b8/0x800 event_enable_func+0x2f0/0x3d0 ftrace_process_regex.isra.0+0x12d/0x1b0 ftrace_filter_write+0xe6/0x140 vfs_write+0x1c9/0x6f0 [...] The cause of the warning is in __ftrace_event_enable_disable(), trace_buffered_event_enable() was called once while trace_buffered_event_disable() was called twice. Reproduction script show as below, for analysis, see the comments: ``` #!/bin/bash cd /sys/kernel/tracing/ # 1. Register a 'disable_event' command, then: # 1) SOFT_DISABLED_BIT was set; # 2) trace_buffered_event_enable() was called first time; echo 'cmdline_proc_show:disable_event:initcall:initcall_finish' > \ set_ftrace_filter # 2. Enable the event registered, then: # 1) SOFT_DISABLED_BIT was cleared; # 2) trace_buffered_event_disable() was called first time; echo 1 > events/initcall/initcall_finish/enable # 3. Try to call into cmdline_proc_show(), then SOFT_DISABLED_BIT was # set again!!! cat /proc/cmdline # 4. Unregister the 'disable_event' command, then: # 1) SOFT_DISABLED_BIT was cleared again; # 2) trace_buffered_event_disable() was called second time!!! echo '!cmdline_proc_show:disable_event:initcall:initcall_finish' > \ set_ftrace_filter ``` To fix it, IIUC, we can change to call trace_buffered_event_enable() at fist time soft-mode enabled, and call trace_buffered_event_disable() at last time soft-mode disabled.
CVE-2023-54213 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: USB: sisusbvga: Add endpoint checks The syzbot fuzzer was able to provoke a WARNING from the sisusbvga driver: ------------[ cut here ]------------ usb 1-1: BOGUS urb xfer, pipe 3 != type 1 WARNING: CPU: 1 PID: 26 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504 Modules linked in: CPU: 1 PID: 26 Comm: kworker/1:1 Not tainted 6.2.0-rc5-syzkaller-00199-g5af6ce704936 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/12/2023 Workqueue: usb_hub_wq hub_event RIP: 0010:usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504 Code: 7c 24 18 e8 6c 50 80 fb 48 8b 7c 24 18 e8 62 1a 01 ff 41 89 d8 44 89 e1 4c 89 ea 48 89 c6 48 c7 c7 60 b1 fa 8a e8 84 b0 be 03 <0f> 0b e9 58 f8 ff ff e8 3e 50 80 fb 48 81 c5 c0 05 00 00 e9 84 f7 RSP: 0018:ffffc90000a1ed18 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000 RDX: ffff888012783a80 RSI: ffffffff816680ec RDI: fffff52000143d95 RBP: ffff888079020000 R08: 0000000000000005 R09: 0000000000000000 R10: 0000000080000000 R11: 0000000000000000 R12: 0000000000000003 R13: ffff888017d33370 R14: 0000000000000003 R15: ffff888021213600 FS: 0000000000000000(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005592753a60b0 CR3: 0000000022899000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> sisusb_bulkout_msg drivers/usb/misc/sisusbvga/sisusbvga.c:224 [inline] sisusb_send_bulk_msg.constprop.0+0x904/0x1230 drivers/usb/misc/sisusbvga/sisusbvga.c:379 sisusb_send_bridge_packet drivers/usb/misc/sisusbvga/sisusbvga.c:567 [inline] sisusb_do_init_gfxdevice drivers/usb/misc/sisusbvga/sisusbvga.c:2077 [inline] sisusb_init_gfxdevice+0x87b/0x4000 drivers/usb/misc/sisusbvga/sisusbvga.c:2177 sisusb_probe+0x9cd/0xbe2 drivers/usb/misc/sisusbvga/sisusbvga.c:2869 ... The problem was caused by the fact that the driver does not check whether the endpoints it uses are actually present and have the appropriate types. This can be fixed by adding a simple check of the endpoints.
CVE-2025-14509 2025-12-31 7.2 High
The Lucky Wheel for WooCommerce – Spin a Sale plugin for WordPress is vulnerable to PHP Code Injection in all versions up to, and including, 1.1.13. This is due to the plugin using eval() to execute user-supplied input from the 'Conditional Tags' setting without proper validation or sanitization. This makes it possible for authenticated attackers, with Administrator-level access and above, to execute arbitrary PHP code on the server. In WordPress multisite installations, this allows Site Administrators to execute arbitrary code, a capability they should not have since plugin/theme file editing is disabled for non-Super Admins in multisite environments.
CVE-2025-15241 2025-12-31 3.5 Low
A security vulnerability has been detected in CloudPanel Community Edition up to 2.5.1. The affected element is an unknown function of the file /admin/users of the component HTTP Header Handler. Such manipulation of the argument Referer leads to open redirect. It is possible to launch the attack remotely. The exploit has been disclosed publicly and may be used. Upgrading to version 2.5.2 is sufficient to fix this issue. Upgrading the affected component is recommended.
CVE-2025-15242 2025-12-31 3.1 Low
A vulnerability was detected in PHPEMS up to 11.0. The impacted element is an unknown function of the component Coupon Handler. Performing manipulation results in race condition. The attack can be initiated remotely. The complexity of an attack is rather high. The exploitability is regarded as difficult. The exploit is now public and may be used.
CVE-2025-15243 2025-12-31 7.3 High
A flaw has been found in code-projects Simple Stock System 1.0. This affects an unknown function of the file /market/login.php. Executing manipulation of the argument Username can lead to sql injection. The attack can be launched remotely. The exploit has been published and may be used.
CVE-2025-15244 2025-12-31 3.7 Low
A vulnerability has been found in PHPEMS up to 11.0. This impacts an unknown function of the component Purchase Request Handler. The manipulation leads to race condition. The attack may be initiated remotely. A high degree of complexity is needed for the attack. The exploitability is said to be difficult. The exploit has been disclosed to the public and may be used.
CVE-2025-15246 2025-12-31 6.3 Medium
A vulnerability was determined in aizuda snail-job up to 1.7.0 on macOS. Affected by this vulnerability is the function FurySerializer.deserialize of the component API. This manipulation of the argument argsStr causes deserialization. Remote exploitation of the attack is possible. The exploit has been publicly disclosed and may be utilized.
CVE-2025-68974 2025-12-31 9.8 Critical
Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in miniOrange WordPress Social Login and Register miniorange-login-openid allows PHP Local File Inclusion.This issue affects WordPress Social Login and Register: from n/a through <= 7.7.0.
CVE-2025-68975 2025-12-31 8.1 High
Authorization Bypass Through User-Controlled Key vulnerability in Eagle-Themes Eagle Booking eagle-booking allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Eagle Booking: from n/a through <= 1.3.4.3.