| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix memory leak in test_gen_synth_cmd() and test_empty_synth_event()
test_gen_synth_cmd() only free buf in fail path, hence buf will leak
when there is no failure. Add kfree(buf) to prevent the memleak. The
same reason and solution in test_empty_synth_event().
unreferenced object 0xffff8881127de000 (size 2048):
comm "modprobe", pid 247, jiffies 4294972316 (age 78.756s)
hex dump (first 32 bytes):
20 67 65 6e 5f 73 79 6e 74 68 5f 74 65 73 74 20 gen_synth_test
20 70 69 64 5f 74 20 6e 65 78 74 5f 70 69 64 5f pid_t next_pid_
backtrace:
[<000000004254801a>] kmalloc_trace+0x26/0x100
[<0000000039eb1cf5>] 0xffffffffa00083cd
[<000000000e8c3bc8>] 0xffffffffa00086ba
[<00000000c293d1ea>] do_one_initcall+0xdb/0x480
[<00000000aa189e6d>] do_init_module+0x1cf/0x680
[<00000000d513222b>] load_module+0x6a50/0x70a0
[<000000001fd4d529>] __do_sys_finit_module+0x12f/0x1c0
[<00000000b36c4c0f>] do_syscall_64+0x3f/0x90
[<00000000bbf20cf3>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
unreferenced object 0xffff8881127df000 (size 2048):
comm "modprobe", pid 247, jiffies 4294972324 (age 78.728s)
hex dump (first 32 bytes):
20 65 6d 70 74 79 5f 73 79 6e 74 68 5f 74 65 73 empty_synth_tes
74 20 20 70 69 64 5f 74 20 6e 65 78 74 5f 70 69 t pid_t next_pi
backtrace:
[<000000004254801a>] kmalloc_trace+0x26/0x100
[<00000000d4db9a3d>] 0xffffffffa0008071
[<00000000c31354a5>] 0xffffffffa00086ce
[<00000000c293d1ea>] do_one_initcall+0xdb/0x480
[<00000000aa189e6d>] do_init_module+0x1cf/0x680
[<00000000d513222b>] load_module+0x6a50/0x70a0
[<000000001fd4d529>] __do_sys_finit_module+0x12f/0x1c0
[<00000000b36c4c0f>] do_syscall_64+0x3f/0x90
[<00000000bbf20cf3>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix wild-memory-access in register_synth_event()
In register_synth_event(), if set_synth_event_print_fmt() failed, then
both trace_remove_event_call() and unregister_trace_event() will be
called, which means the trace_event_call will call
__unregister_trace_event() twice. As the result, the second unregister
will causes the wild-memory-access.
register_synth_event
set_synth_event_print_fmt failed
trace_remove_event_call
event_remove
if call->event.funcs then
__unregister_trace_event (first call)
unregister_trace_event
__unregister_trace_event (second call)
Fix the bug by avoiding to call the second __unregister_trace_event() by
checking if the first one is called.
general protection fault, probably for non-canonical address
0xfbd59c0000000024: 0000 [#1] SMP KASAN PTI
KASAN: maybe wild-memory-access in range
[0xdead000000000120-0xdead000000000127]
CPU: 0 PID: 3807 Comm: modprobe Not tainted
6.1.0-rc1-00186-g76f33a7eedb4 #299
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:unregister_trace_event+0x6e/0x280
Code: 00 fc ff df 4c 89 ea 48 c1 ea 03 80 3c 02 00 0f 85 0e 02 00 00 48
b8 00 00 00 00 00 fc ff df 4c 8b 63 08 4c 89 e2 48 c1 ea 03 <80> 3c 02
00 0f 85 e2 01 00 00 49 89 2c 24 48 85 ed 74 28 e8 7a 9b
RSP: 0018:ffff88810413f370 EFLAGS: 00010a06
RAX: dffffc0000000000 RBX: ffff888105d050b0 RCX: 0000000000000000
RDX: 1bd5a00000000024 RSI: ffff888119e276e0 RDI: ffffffff835a8b20
RBP: dead000000000100 R08: 0000000000000000 R09: fffffbfff0913481
R10: ffffffff8489a407 R11: fffffbfff0913480 R12: dead000000000122
R13: ffff888105d050b8 R14: 0000000000000000 R15: ffff888105d05028
FS: 00007f7823e8d540(0000) GS:ffff888119e00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7823e7ebec CR3: 000000010a058002 CR4: 0000000000330ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__create_synth_event+0x1e37/0x1eb0
create_or_delete_synth_event+0x110/0x250
synth_event_run_command+0x2f/0x110
test_gen_synth_cmd+0x170/0x2eb [synth_event_gen_test]
synth_event_gen_test_init+0x76/0x9bc [synth_event_gen_test]
do_one_initcall+0xdb/0x480
do_init_module+0x1cf/0x680
load_module+0x6a50/0x70a0
__do_sys_finit_module+0x12f/0x1c0
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix race where eprobes can be called before the event
The flag that tells the event to call its triggers after reading the event
is set for eprobes after the eprobe is enabled. This leads to a race where
the eprobe may be triggered at the beginning of the event where the record
information is NULL. The eprobe then dereferences the NULL record causing
a NULL kernel pointer bug.
Test for a NULL record to keep this from happening. |
| The goform/setUsbUnload endpoint of Tenda AC15 AC1900 version 15.03.05.19 allows remote attackers to execute arbitrary system commands via the deviceName POST parameter. |
| In jQuery versions greater than or equal to 1.0.3 and before 3.5.0, passing HTML containing <option> elements from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: zfcp: Fix double free of FSF request when qdio send fails
We used to use the wrong type of integer in 'zfcp_fsf_req_send()' to cache
the FSF request ID when sending a new FSF request. This is used in case the
sending fails and we need to remove the request from our internal hash
table again (so we don't keep an invalid reference and use it when we free
the request again).
In 'zfcp_fsf_req_send()' we used to cache the ID as 'int' (signed and 32
bit wide), but the rest of the zfcp code (and the firmware specification)
handles the ID as 'unsigned long'/'u64' (unsigned and 64 bit wide [s390x
ELF ABI]). For one this has the obvious problem that when the ID grows
past 32 bit (this can happen reasonably fast) it is truncated to 32 bit
when storing it in the cache variable and so doesn't match the original ID
anymore. The second less obvious problem is that even when the original ID
has not yet grown past 32 bit, as soon as the 32nd bit is set in the
original ID (0x80000000 = 2'147'483'648) we will have a mismatch when we
cast it back to 'unsigned long'. As the cached variable is of a signed
type, the compiler will choose a sign-extending instruction to load the 32
bit variable into a 64 bit register (e.g.: 'lgf %r11,188(%r15)'). So once
we pass the cached variable into 'zfcp_reqlist_find_rm()' to remove the
request again all the leading zeros will be flipped to ones to extend the
sign and won't match the original ID anymore (this has been observed in
practice).
If we can't successfully remove the request from the hash table again after
'zfcp_qdio_send()' fails (this happens regularly when zfcp cannot notify
the adapter about new work because the adapter is already gone during
e.g. a ChpID toggle) we will end up with a double free. We unconditionally
free the request in the calling function when 'zfcp_fsf_req_send()' fails,
but because the request is still in the hash table we end up with a stale
memory reference, and once the zfcp adapter is either reset during recovery
or shutdown we end up freeing the same memory twice.
The resulting stack traces vary depending on the kernel and have no direct
correlation to the place where the bug occurs. Here are three examples that
have been seen in practice:
list_del corruption. next->prev should be 00000001b9d13800, but was 00000000dead4ead. (next=00000001bd131a00)
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:62!
monitor event: 0040 ilc:2 [#1] PREEMPT SMP
Modules linked in: ...
CPU: 9 PID: 1617 Comm: zfcperp0.0.1740 Kdump: loaded
Hardware name: ...
Krnl PSW : 0704d00180000000 00000003cbeea1f8 (__list_del_entry_valid+0x98/0x140)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3
Krnl GPRS: 00000000916d12f1 0000000080000000 000000000000006d 00000003cb665cd6
0000000000000001 0000000000000000 0000000000000000 00000000d28d21e8
00000000d3844000 00000380099efd28 00000001bd131a00 00000001b9d13800
00000000d3290100 0000000000000000 00000003cbeea1f4 00000380099efc70
Krnl Code: 00000003cbeea1e8: c020004f68a7 larl %r2,00000003cc8d7336
00000003cbeea1ee: c0e50027fd65 brasl %r14,00000003cc3e9cb8
#00000003cbeea1f4: af000000 mc 0,0
>00000003cbeea1f8: c02000920440 larl %r2,00000003cd12aa78
00000003cbeea1fe: c0e500289c25 brasl %r14,00000003cc3fda48
00000003cbeea204: b9040043 lgr %r4,%r3
00000003cbeea208: b9040051 lgr %r5,%r1
00000003cbeea20c: b9040032 lgr %r3,%r2
Call Trace:
[<00000003cbeea1f8>] __list_del_entry_valid+0x98/0x140
([<00000003cbeea1f4>] __list_del_entry_valid+0x94/0x140)
[<000003ff7ff502fe>] zfcp_fsf_req_dismiss_all+0xde/0x150 [zfcp]
[<000003ff7ff49cd0>] zfcp_erp_strategy_do_action+0x160/0x280 [zfcp]
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
misc/vmw_vmci: fix an infoleak in vmci_host_do_receive_datagram()
`struct vmci_event_qp` allocated by qp_notify_peer() contains padding,
which may carry uninitialized data to the userspace, as observed by
KMSAN:
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user ./include/linux/instrumented.h:121
instrument_copy_to_user ./include/linux/instrumented.h:121
_copy_to_user+0x5f/0xb0 lib/usercopy.c:33
copy_to_user ./include/linux/uaccess.h:169
vmci_host_do_receive_datagram drivers/misc/vmw_vmci/vmci_host.c:431
vmci_host_unlocked_ioctl+0x33d/0x43d0 drivers/misc/vmw_vmci/vmci_host.c:925
vfs_ioctl fs/ioctl.c:51
...
Uninit was stored to memory at:
kmemdup+0x74/0xb0 mm/util.c:131
dg_dispatch_as_host drivers/misc/vmw_vmci/vmci_datagram.c:271
vmci_datagram_dispatch+0x4f8/0xfc0 drivers/misc/vmw_vmci/vmci_datagram.c:339
qp_notify_peer+0x19a/0x290 drivers/misc/vmw_vmci/vmci_queue_pair.c:1479
qp_broker_attach drivers/misc/vmw_vmci/vmci_queue_pair.c:1662
qp_broker_alloc+0x2977/0x2f30 drivers/misc/vmw_vmci/vmci_queue_pair.c:1750
vmci_qp_broker_alloc+0x96/0xd0 drivers/misc/vmw_vmci/vmci_queue_pair.c:1940
vmci_host_do_alloc_queuepair drivers/misc/vmw_vmci/vmci_host.c:488
vmci_host_unlocked_ioctl+0x24fd/0x43d0 drivers/misc/vmw_vmci/vmci_host.c:927
...
Local variable ev created at:
qp_notify_peer+0x54/0x290 drivers/misc/vmw_vmci/vmci_queue_pair.c:1456
qp_broker_attach drivers/misc/vmw_vmci/vmci_queue_pair.c:1662
qp_broker_alloc+0x2977/0x2f30 drivers/misc/vmw_vmci/vmci_queue_pair.c:1750
Bytes 28-31 of 48 are uninitialized
Memory access of size 48 starts at ffff888035155e00
Data copied to user address 0000000020000100
Use memset() to prevent the infoleaks.
Also speculatively fix qp_notify_peer_local(), which may suffer from the
same problem. |
| An issue was discovered in SaltStack Salt before 2019.2.4 and 3000 before 3000.2. The salt-master process ClearFuncs class does not properly validate method calls. This allows a remote user to access some methods without authentication. These methods can be used to retrieve user tokens from the salt master and/or run arbitrary commands on salt minions. |
| An issue was discovered in SaltStack Salt before 2019.2.4 and 3000 before 3000.2. The salt-master process ClearFuncs class allows access to some methods that improperly sanitize paths. These methods allow arbitrary directory access to authenticated users. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: sdhci-pci: Fix possible memory leak caused by missing pci_dev_put()
pci_get_device() will increase the reference count for the returned
pci_dev. We need to use pci_dev_put() to decrease the reference count
before amd_probe() returns. There is no problem for the 'smbus_dev ==
NULL' branch because pci_dev_put() can also handle the NULL input
parameter case. |
| The Snap Creek Duplicator plugin before 1.3.28 for WordPress (and Duplicator Pro before 3.8.7.1) allows Directory Traversal via ../ in the file parameter to duplicator_download or duplicator_init. |
| The Treck TCP/IP stack before 6.0.1.66 has an IPv6 Out-of-bounds Read. |
| Sophos XG Firewall 17.x through v17.5 MR12 allows a Buffer Overflow and remote code execution via the HTTP/S Bookmarks feature for clientless access. Hotfix HF062020.1 was published for all firewalls running v17.x. |
| A SQL injection issue was found in SFOS 17.0, 17.1, 17.5, and 18.0 before 2020-04-25 on Sophos XG Firewall devices, as exploited in the wild in April 2020. This affected devices configured with either the administration (HTTPS) service or the User Portal exposed on the WAN zone. A successful attack may have caused remote code execution that exfiltrated usernames and hashed passwords for the local device admin(s), portal admins, and user accounts used for remote access (but not external Active Directory or LDAP passwords) |
| On DrayTek Vigor3900, Vigor2960, and Vigor300B devices before 1.5.1, cgi-bin/mainfunction.cgi/cvmcfgupload allows remote command execution via shell metacharacters in a filename when the text/x-python-script content type is used, a different issue than CVE-2020-14472. |
| A remote code execution vulnerability in MobileIron Core & Connector versions 10.3.0.3 and earlier, 10.4.0.0, 10.4.0.1, 10.4.0.2, 10.4.0.3, 10.5.1.0, 10.5.2.0 and 10.6.0.0; and Sentry versions 9.7.2 and earlier, and 9.8.0; and Monitor and Reporting Database (RDB) version 2.0.0.1 and earlier that allows remote attackers to execute arbitrary code via unspecified vectors. |
| An issue was discovered in SaltStack Salt through 3002. Sending crafted web requests to the Salt API, with the SSH client enabled, can result in shell injection. |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix missing xas_retry() calls in xarray iteration
netfslib has a number of places in which it performs iteration of an xarray
whilst being under the RCU read lock. It *should* call xas_retry() as the
first thing inside of the loop and do "continue" if it returns true in case
the xarray walker passed out a special value indicating that the walk needs
to be redone from the root[*].
Fix this by adding the missing retry checks.
[*] I wonder if this should be done inside xas_find(), xas_next_node() and
suchlike, but I'm told that's not an simple change to effect.
This can cause an oops like that below. Note the faulting address - this
is an internal value (|0x2) returned from xarray.
BUG: kernel NULL pointer dereference, address: 0000000000000402
...
RIP: 0010:netfs_rreq_unlock+0xef/0x380 [netfs]
...
Call Trace:
netfs_rreq_assess+0xa6/0x240 [netfs]
netfs_readpage+0x173/0x3b0 [netfs]
? init_wait_var_entry+0x50/0x50
filemap_read_page+0x33/0xf0
filemap_get_pages+0x2f2/0x3f0
filemap_read+0xaa/0x320
? do_filp_open+0xb2/0x150
? rmqueue+0x3be/0xe10
ceph_read_iter+0x1fe/0x680 [ceph]
? new_sync_read+0x115/0x1a0
new_sync_read+0x115/0x1a0
vfs_read+0xf3/0x180
ksys_read+0x5f/0xe0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Changes:
========
ver #2)
- Changed an unsigned int to a size_t to reduce the likelihood of an
overflow as per Willy's suggestion.
- Added an additional patch to fix the maths. |
| A vulnerability was found in YiJiuSmile kkFileViewOfficeEdit up to 5fbc57c48e8fe6c1b91e0e7995e2d59615f37abd and classified as critical. Affected by this issue is the function fileUpload of the file /fileUpload. The manipulation of the argument File leads to unrestricted upload. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. This product is using a rolling release to provide continious delivery. Therefore, no version details for affected nor updated releases are available. |
| A vulnerability was found in YiJiuSmile kkFileViewOfficeEdit up to 5fbc57c48e8fe6c1b91e0e7995e2d59615f37abd. It has been classified as critical. This affects the function deleteFile of the file /deleteFile. The manipulation of the argument fileName leads to path traversal. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. This product takes the approach of rolling releases to provide continious delivery. Therefore, version details for affected and updated releases are not available. |