CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Apache Tomcat 4.1.0 through 4.1.39, 5.5.0 through 5.5.27, and 6.0.0 through 6.0.18, when the Java AJP connector and mod_jk load balancing are used, allows remote attackers to cause a denial of service (application outage) via a crafted request with invalid headers, related to temporary blocking of connectors that have encountered errors, as demonstrated by an error involving a malformed HTTP Host header. |
Apache Tomcat 4.1.0 through 4.1.39, 5.5.0 through 5.5.27, 6.0.0 through 6.0.18, and possibly earlier versions normalizes the target pathname before filtering the query string when using the RequestDispatcher method, which allows remote attackers to bypass intended access restrictions and conduct directory traversal attacks via .. (dot dot) sequences and the WEB-INF directory in a Request. |
The TLS protocol, and the SSL protocol 3.0 and possibly earlier, as used in Microsoft Internet Information Services (IIS) 7.0, mod_ssl in the Apache HTTP Server 2.2.14 and earlier, OpenSSL before 0.9.8l, GnuTLS 2.8.5 and earlier, Mozilla Network Security Services (NSS) 3.12.4 and earlier, multiple Cisco products, and other products, does not properly associate renegotiation handshakes with an existing connection, which allows man-in-the-middle attackers to insert data into HTTPS sessions, and possibly other types of sessions protected by TLS or SSL, by sending an unauthenticated request that is processed retroactively by a server in a post-renegotiation context, related to a "plaintext injection" attack, aka the "Project Mogul" issue. |
The Apache HTTP Server 2.2.11 and earlier 2.2 versions does not properly handle Options=IncludesNOEXEC in the AllowOverride directive, which allows local users to gain privileges by configuring (1) Options Includes, (2) Options +Includes, or (3) Options +IncludesNOEXEC in a .htaccess file, and then inserting an exec element in a .shtml file. |
The stream_reqbody_cl function in mod_proxy_http.c in the mod_proxy module in the Apache HTTP Server before 2.3.3, when a reverse proxy is configured, does not properly handle an amount of streamed data that exceeds the Content-Length value, which allows remote attackers to cause a denial of service (CPU consumption) via crafted requests. |
On Windows, Apache Portable Runtime 1.7.0 and earlier may write beyond the end of a stack based buffer in apr_socket_sendv(). This is a result of integer overflow. |
Integer Overflow or Wraparound vulnerability in apr_encode functions of Apache Portable Runtime (APR) allows an attacker to write beyond bounds of a buffer.
This issue affects Apache Portable Runtime (APR) version 1.7.0. |
Issue summary: Processing some specially crafted ASN.1 object identifiers or
data containing them may be very slow.
Impact summary: Applications that use OBJ_obj2txt() directly, or use any of
the OpenSSL subsystems OCSP, PKCS7/SMIME, CMS, CMP/CRMF or TS with no message
size limit may experience notable to very long delays when processing those
messages, which may lead to a Denial of Service.
An OBJECT IDENTIFIER is composed of a series of numbers - sub-identifiers -
most of which have no size limit. OBJ_obj2txt() may be used to translate
an ASN.1 OBJECT IDENTIFIER given in DER encoding form (using the OpenSSL
type ASN1_OBJECT) to its canonical numeric text form, which are the
sub-identifiers of the OBJECT IDENTIFIER in decimal form, separated by
periods.
When one of the sub-identifiers in the OBJECT IDENTIFIER is very large
(these are sizes that are seen as absurdly large, taking up tens or hundreds
of KiBs), the translation to a decimal number in text may take a very long
time. The time complexity is O(n^2) with 'n' being the size of the
sub-identifiers in bytes (*).
With OpenSSL 3.0, support to fetch cryptographic algorithms using names /
identifiers in string form was introduced. This includes using OBJECT
IDENTIFIERs in canonical numeric text form as identifiers for fetching
algorithms.
Such OBJECT IDENTIFIERs may be received through the ASN.1 structure
AlgorithmIdentifier, which is commonly used in multiple protocols to specify
what cryptographic algorithm should be used to sign or verify, encrypt or
decrypt, or digest passed data.
Applications that call OBJ_obj2txt() directly with untrusted data are
affected, with any version of OpenSSL. If the use is for the mere purpose
of display, the severity is considered low.
In OpenSSL 3.0 and newer, this affects the subsystems OCSP, PKCS7/SMIME,
CMS, CMP/CRMF or TS. It also impacts anything that processes X.509
certificates, including simple things like verifying its signature.
The impact on TLS is relatively low, because all versions of OpenSSL have a
100KiB limit on the peer's certificate chain. Additionally, this only
impacts clients, or servers that have explicitly enabled client
authentication.
In OpenSSL 1.1.1 and 1.0.2, this only affects displaying diverse objects,
such as X.509 certificates. This is assumed to not happen in such a way
that it would cause a Denial of Service, so these versions are considered
not affected by this issue in such a way that it would be cause for concern,
and the severity is therefore considered low. |
The function X509_VERIFY_PARAM_add0_policy() is documented to
implicitly enable the certificate policy check when doing certificate
verification. However the implementation of the function does not
enable the check which allows certificates with invalid or incorrect
policies to pass the certificate verification.
As suddenly enabling the policy check could break existing deployments it was
decided to keep the existing behavior of the X509_VERIFY_PARAM_add0_policy()
function.
Instead the applications that require OpenSSL to perform certificate
policy check need to use X509_VERIFY_PARAM_set1_policies() or explicitly
enable the policy check by calling X509_VERIFY_PARAM_set_flags() with
the X509_V_FLAG_POLICY_CHECK flag argument.
Certificate policy checks are disabled by default in OpenSSL and are not
commonly used by applications. |
Applications that use a non-default option when verifying certificates may be
vulnerable to an attack from a malicious CA to circumvent certain checks.
Invalid certificate policies in leaf certificates are silently ignored by
OpenSSL and other certificate policy checks are skipped for that certificate.
A malicious CA could use this to deliberately assert invalid certificate policies
in order to circumvent policy checking on the certificate altogether.
Policy processing is disabled by default but can be enabled by passing
the `-policy' argument to the command line utilities or by calling the
`X509_VERIFY_PARAM_set1_policies()' function. |
Incomplete Cleanup vulnerability in Apache Tomcat.
The internal fork of Commons FileUpload packaged with Apache Tomcat 9.0.70 through 9.0.80 and 8.5.85 through 8.5.93 included an unreleased,
in progress refactoring that exposed a potential denial of service on
Windows if a web application opened a stream for an uploaded file but
failed to close the stream. The file would never be deleted from disk
creating the possibility of an eventual denial of service due to the
disk being full.
Users are recommended to upgrade to version 9.0.81 onwards or 8.5.94 onwards, which fixes the issue. |
The fix for CVE-2023-24998 was incomplete for Apache Tomcat 11.0.0-M2 to 11.0.0-M4, 10.1.5 to 10.1.7, 9.0.71 to 9.0.73 and 8.5.85 to 8.5.87. If non-default HTTP connector settings were used such that the maxParameterCount could be reached using query string parameters and a request was submitted that supplied exactly maxParameterCount parameters in the query string, the limit for uploaded request parts could be bypassed with the potential for a denial of service to occur. |
Apache Commons FileUpload before 1.5 does not limit the number of request parts to be processed resulting in the possibility of an attacker triggering a DoS with a malicious upload or series of uploads.
Note that, like all of the file upload limits, the
new configuration option (FileUploadBase#setFileCountMax) is not
enabled by default and must be explicitly configured. |
The fix for CVE-2020-9484 was incomplete. When using Apache Tomcat 10.0.0-M1 to 10.0.0, 9.0.0.M1 to 9.0.41, 8.5.0 to 8.5.61 or 7.0.0. to 7.0.107 with a configuration edge case that was highly unlikely to be used, the Tomcat instance was still vulnerable to CVE-2020-9494. Note that both the previously published prerequisites for CVE-2020-9484 and the previously published mitigations for CVE-2020-9484 also apply to this issue. |
When responding to new h2c connection requests, Apache Tomcat versions 10.0.0-M1 to 10.0.0, 9.0.0.M1 to 9.0.41 and 8.5.0 to 8.5.61 could duplicate request headers and a limited amount of request body from one request to another meaning user A and user B could both see the results of user A's request. |
When serving resources from a network location using the NTFS file system, Apache Tomcat versions 10.0.0-M1 to 10.0.0-M9, 9.0.0.M1 to 9.0.39, 8.5.0 to 8.5.59 and 7.0.0 to 7.0.106 were susceptible to JSP source code disclosure in some configurations. The root cause was the unexpected behaviour of the JRE API File.getCanonicalPath() which in turn was caused by the inconsistent behaviour of the Windows API (FindFirstFileW) in some circumstances. |
CXF supports (via JwtRequestCodeFilter) passing OAuth 2 parameters via a JWT token as opposed to query parameters (see: The OAuth 2.0 Authorization Framework: JWT Secured Authorization Request (JAR)). Instead of sending a JWT token as a "request" parameter, the spec also supports specifying a URI from which to retrieve a JWT token from via the "request_uri" parameter. CXF was not validating the "request_uri" parameter (apart from ensuring it uses "https) and was making a REST request to the parameter in the request to retrieve a token. This means that CXF was vulnerable to DDos attacks on the authorization server, as specified in section 10.4.1 of the spec. This issue affects Apache CXF versions prior to 3.4.3; Apache CXF versions prior to 3.3.10. |
While investigating bug 64830 it was discovered that Apache Tomcat 10.0.0-M1 to 10.0.0-M9, 9.0.0-M1 to 9.0.39 and 8.5.0 to 8.5.59 could re-use an HTTP request header value from the previous stream received on an HTTP/2 connection for the request associated with the subsequent stream. While this would most likely lead to an error and the closure of the HTTP/2 connection, it is possible that information could leak between requests. |
Issue summary: Generating excessively long X9.42 DH keys or checking
excessively long X9.42 DH keys or parameters may be very slow.
Impact summary: Applications that use the functions DH_generate_key() to
generate an X9.42 DH key may experience long delays. Likewise, applications
that use DH_check_pub_key(), DH_check_pub_key_ex() or EVP_PKEY_public_check()
to check an X9.42 DH key or X9.42 DH parameters may experience long delays.
Where the key or parameters that are being checked have been obtained from
an untrusted source this may lead to a Denial of Service.
While DH_check() performs all the necessary checks (as of CVE-2023-3817),
DH_check_pub_key() doesn't make any of these checks, and is therefore
vulnerable for excessively large P and Q parameters.
Likewise, while DH_generate_key() performs a check for an excessively large
P, it doesn't check for an excessively large Q.
An application that calls DH_generate_key() or DH_check_pub_key() and
supplies a key or parameters obtained from an untrusted source could be
vulnerable to a Denial of Service attack.
DH_generate_key() and DH_check_pub_key() are also called by a number of
other OpenSSL functions. An application calling any of those other
functions may similarly be affected. The other functions affected by this
are DH_check_pub_key_ex(), EVP_PKEY_public_check(), and EVP_PKEY_generate().
Also vulnerable are the OpenSSL pkey command line application when using the
"-pubcheck" option, as well as the OpenSSL genpkey command line application.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue. |
A flaw was found in codehaus-plexus. The org.codehaus.plexus.util.xml.XmlWriterUtil#writeComment fails to sanitize comments for a --> sequence. This issue means that text contained in the command string could be interpreted as XML and allow for XML injection. |