| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
spi-rockchip: Fix register out of bounds access
Do not write native chip select stuff for GPIO chip selects.
GPIOs can be numbered much higher than native CS.
Also, it makes no sense. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Increase block_sequence array size
[Why]
It's possible to generate more than 50 steps in hwss_build_fast_sequence,
for example with a 6-pipe asic where all pipes are in one MPC chain. This
overflows the block_sequence buffer and corrupts block_sequence_steps,
causing a crash.
[How]
Expand block_sequence to 100 items. A naive upper bound on the possible
number of steps for a 6-pipe asic, ignoring the potential for steps to be
mutually exclusive, is 91 with current code, therefore 100 is sufficient. |
| In the Linux kernel, the following vulnerability has been resolved:
alloc_tag: allocate percpu counters for module tags dynamically
When a module gets unloaded it checks whether any of its tags are still in
use and if so, we keep the memory containing module's allocation tags
alive until all tags are unused. However percpu counters referenced by
the tags are freed by free_module(). This will lead to UAF if the memory
allocated by a module is accessed after module was unloaded.
To fix this we allocate percpu counters for module allocation tags
dynamically and we keep it alive for tags which are still in use after
module unloading. This also removes the requirement of a larger
PERCPU_MODULE_RESERVE when memory allocation profiling is enabled because
percpu memory for counters does not need to be reserved anymore. |
| OpenEXR provides the specification and reference implementation of the EXR file format, an image storage format for the motion picture industry. In versions 3.2.0 through 3.2.4, 3.3.0 through 3.3.5, and 3.4.0 through 3.4.2, a memory safety bug in the legacy OpenEXR Python adapter (the deprecated OpenEXR.InputFile wrapper) allow crashes and likely code execution when opening attacker-controlled EXR files or when passing crafted Python objects. Integer overflow and unchecked allocation in InputFile.channel() and InputFile.channels() can lead to heap overflow (32 bit) or a NULL deref (64 bit). Versions 3.2.5, 3.3.6, and 3.4.3 contain a patch for the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/vmscape: Add conditional IBPB mitigation
VMSCAPE is a vulnerability that exploits insufficient branch predictor
isolation between a guest and a userspace hypervisor (like QEMU). Existing
mitigations already protect kernel/KVM from a malicious guest. Userspace
can additionally be protected by flushing the branch predictors after a
VMexit.
Since it is the userspace that consumes the poisoned branch predictors,
conditionally issue an IBPB after a VMexit and before returning to
userspace. Workloads that frequently switch between hypervisor and
userspace will incur the most overhead from the new IBPB.
This new IBPB is not integrated with the existing IBPB sites. For
instance, a task can use the existing speculation control prctl() to
get an IBPB at context switch time. With this implementation, the
IBPB is doubled up: one at context switch and another before running
userspace.
The intent is to integrate and optimize these cases post-embargo.
[ dhansen: elaborate on suboptimal IBPB solution ] |
| A vulnerability was identified in the email parsing library due to improper handling of specially formatted recipient email addresses. An attacker can exploit this flaw by crafting a recipient address that embeds an external address within quotes. This causes the application to misdirect the email to the attacker's external address instead of the intended internal recipient. This could lead to a significant data leak of sensitive information and allow an attacker to bypass security filters and access controls. |
| A vulnerability was found in OpenClinica Community Edition up to 3.12.2/3.13. This affects an unknown part of the file /ImportCRFData?action=confirm of the component CRF Data Import. Performing manipulation of the argument xml_file results in path traversal. The attack can be initiated remotely. The exploit has been made public and could be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| Crypto++ (aka cryptopp) through 5.6.4 does not document the requirement for a compile-time NDEBUG definition disabling the many assert calls that are unintended in production use, which might allow context-dependent attackers to obtain sensitive information by leveraging access to process memory after an assertion failure, as demonstrated by reading a core dump. |
| A flaw has been found in YunaiV ruoyi-vue-pro up to 2025.09. Impacted is an unknown function of the file /crm/contact/transfer. This manipulation of the argument ids/newOwnerUserId causes improper authorization. The attack is possible to be carried out remotely. The exploit has been published and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A cross-site scripting (XSS) vulnerability has been reported to affect QuLog Center. If a remote attacker gains an administrator account, they can then exploit the vulnerability to bypass security mechanisms or read application data.
We have already fixed the vulnerability in the following version:
QuLog Center 1.8.2.923 ( 2025/08/27 ) and later |
| An SQL injection vulnerability has been reported to affect QuMagie. A remote attacker can exploit the vulnerability to execute unauthorized code or commands.
We have already fixed the vulnerability in the following versions:
QuMagie 2.7.0 and later |
| A relative path traversal vulnerability has been reported to affect QuMagie. If a remote attacker, they can then exploit the vulnerability to read the contents of unexpected files or system data.
We have already fixed the vulnerability in the following version:
QuMagie 2.7.3 and later |
| A path traversal vulnerability has been reported to affect Qsync Central. If a remote attacker gains a user account, they can then exploit the vulnerability to read the contents of unexpected files or system data.
We have already fixed the vulnerability in the following version:
Qsync Central 5.0.0.3 ( 2025/08/28 ) and later |
| A cross-site scripting (XSS) vulnerability has been reported to affect File Station 5. If a remote attacker gains a user account, they can then exploit the vulnerability to bypass security mechanisms or read application data.
We have already fixed the vulnerability in the following version:
File Station 5 5.5.6.5018 and later |
| An allocation of resources without limits or throttling vulnerability has been reported to affect File Station 5. If a remote attacker gains a user account, they can then exploit the vulnerability to prevent other systems, applications, or processes from accessing the same type of resource.
We have already fixed the vulnerability in the following version:
File Station 5 5.5.6.5018 and later |
| A NULL pointer dereference vulnerability has been reported to affect File Station 5. If a remote attacker gains a user account, they can then exploit the vulnerability to launch a denial-of-service (DoS) attack.
We have already fixed the vulnerability in the following version:
File Station 5 5.5.6.5018 and later |
| An allocation of resources without limits or throttling vulnerability has been reported to affect File Station 5. If a remote attacker gains an administrator account, they can then exploit the vulnerability to prevent other systems, applications, or processes from accessing the same type of resource.
We have already fixed the vulnerability in the following version:
File Station 5 5.5.6.5018 and later |
| An allocation of resources without limits or throttling vulnerability has been reported to affect File Station 5. If a remote attacker gains a user account, they can then exploit the vulnerability to prevent other systems, applications, or processes from accessing the same type of resource.
We have already fixed the vulnerability in the following version:
File Station 5 5.5.6.5018 and later |
| An allocation of resources without limits or throttling vulnerability has been reported to affect File Station 5. If a remote attacker gains a user account, they can then exploit the vulnerability to prevent other systems, applications, or processes from accessing the same type of resource.
We have already fixed the vulnerability in the following version:
File Station 5 5.5.6.5018 and later |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/tegra241-cmdqv: Fix warnings due to dmam_free_coherent()
Two WARNINGs are observed when SMMU driver rolls back upon failure:
arm-smmu-v3.9.auto: Failed to register iommu
arm-smmu-v3.9.auto: probe with driver arm-smmu-v3 failed with error -22
------------[ cut here ]------------
WARNING: CPU: 5 PID: 1 at kernel/dma/mapping.c:74 dmam_free_coherent+0xc0/0xd8
Call trace:
dmam_free_coherent+0xc0/0xd8 (P)
tegra241_vintf_free_lvcmdq+0x74/0x188
tegra241_cmdqv_remove_vintf+0x60/0x148
tegra241_cmdqv_remove+0x48/0xc8
arm_smmu_impl_remove+0x28/0x60
devm_action_release+0x1c/0x40
------------[ cut here ]------------
128 pages are still in use!
WARNING: CPU: 16 PID: 1 at mm/page_alloc.c:6902 free_contig_range+0x18c/0x1c8
Call trace:
free_contig_range+0x18c/0x1c8 (P)
cma_release+0x154/0x2f0
dma_free_contiguous+0x38/0xa0
dma_direct_free+0x10c/0x248
dma_free_attrs+0x100/0x290
dmam_free_coherent+0x78/0xd8
tegra241_vintf_free_lvcmdq+0x74/0x160
tegra241_cmdqv_remove+0x98/0x198
arm_smmu_impl_remove+0x28/0x60
devm_action_release+0x1c/0x40
This is because the LVCMDQ queue memory are managed by devres, while that
dmam_free_coherent() is called in the context of devm_action_release().
Jason pointed out that "arm_smmu_impl_probe() has mis-ordered the devres
callbacks if ops->device_remove() is going to be manually freeing things
that probe allocated":
https://lore.kernel.org/linux-iommu/20250407174408.GB1722458@nvidia.com/
In fact, tegra241_cmdqv_init_structures() only allocates memory resources
which means any failure that it generates would be similar to -ENOMEM, so
there is no point in having that "falling back to standard SMMU" routine,
as the standard SMMU would likely fail to allocate memory too.
Remove the unwind part in tegra241_cmdqv_init_structures(), and return a
proper error code to ask SMMU driver to call tegra241_cmdqv_remove() via
impl_ops->device_remove(). Then, drop tegra241_vintf_free_lvcmdq() since
devres will take care of that. |