| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
PM: domains: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| Saleor Storefront is software for building e-commerce experiences. Prior to commit 579241e75a5eb332ccf26e0bcdd54befa33f4783, when any user authenticates in the storefront, anonymous users are able to access their data. The session is leaked through cache and can be accessed by anyone. Users should upgrade to a version that incorporates commit 579241e75a5eb332ccf26e0bcdd54befa33f4783 or later to receive a patch. A possible workaround is to temporarily disable authentication by changing the usage of `createSaleorAuthClient()`. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: hif_usb: clean up skbs if ath9k_hif_usb_rx_stream() fails
Syzkaller detected a memory leak of skbs in ath9k_hif_usb_rx_stream().
While processing skbs in ath9k_hif_usb_rx_stream(), the already allocated
skbs in skb_pool are not freed if ath9k_hif_usb_rx_stream() fails. If we
have an incorrect pkt_len or pkt_tag, the input skb is considered invalid
and dropped. All the associated packets already in skb_pool should be
dropped and freed. Added a comment describing this issue.
The patch also makes remain_skb NULL after being processed so that it
cannot be referenced after potential free. The initialization of hif_dev
fields which are associated with remain_skb (rx_remain_len,
rx_transfer_len and rx_pad_len) is moved after a new remain_skb is
allocated.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| BPv7 dissector crash in Wireshark 4.6.0 allows denial of service |
| Within HostnameError.Error(), when constructing an error string, there is no limit to the number of hosts that will be printed out. Furthermore, the error string is constructed by repeated string concatenation, leading to quadratic runtime. Therefore, a certificate provided by a malicious actor can result in excessive resource consumption. |
| Kafka dissector crash in Wireshark 4.6.0 and 4.4.0 to 4.4.10 allows denial of service |
| NVIDIA Triton Inference Server contains a vulnerability where an attacker may cause an improper check for unusual or exceptional conditions issue by sending extra large payloads. A successful exploit of this vulnerability may lead to denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
wwan_hwsim: fix possible memory leak in wwan_hwsim_dev_new()
Inject fault while probing module, if device_register() fails,
but the refcount of kobject is not decreased to 0, the name
allocated in dev_set_name() is leaked. Fix this by calling
put_device(), so that name can be freed in callback function
kobject_cleanup().
unreferenced object 0xffff88810152ad20 (size 8):
comm "modprobe", pid 252, jiffies 4294849206 (age 22.713s)
hex dump (first 8 bytes):
68 77 73 69 6d 30 00 ff hwsim0..
backtrace:
[<000000009c3504ed>] __kmalloc_node_track_caller+0x44/0x1b0
[<00000000c0228a5e>] kvasprintf+0xb5/0x140
[<00000000cff8c21f>] kvasprintf_const+0x55/0x180
[<0000000055a1e073>] kobject_set_name_vargs+0x56/0x150
[<000000000a80b139>] dev_set_name+0xab/0xe0 |
| MONGO dissector infinite loop in Wireshark 4.4.0 to 4.4.9 and 4.2.0 to 4.2.13 allows denial of service |
| In the Linux kernel, the following vulnerability has been resolved:
media: airspy: fix memory leak in airspy probe
The commit ca9dc8d06ab6 ("media: airspy: respect the DMA coherency
rules") moves variable buf from stack to heap, however, it only frees
buf in the error handling code, missing deallocation in the success
path.
Fix this by freeing buf in the success path since this variable does not
have any references in other code. |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: maps: pxa2xx-flash: fix memory leak in probe
Free 'info' upon remapping error to avoid a memory leak.
[<miquel.raynal@bootlin.com>: Reword the commit log] |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix potential memory leak in brcmf_netdev_start_xmit()
The brcmf_netdev_start_xmit() returns NETDEV_TX_OK without freeing skb
in case of pskb_expand_head() fails, add dev_kfree_skb() to fix it.
Compile tested only. |
| In the Linux kernel, the following vulnerability has been resolved:
orangefs: Fix kmemleak in orangefs_sysfs_init()
When insert and remove the orangefs module, there are kobjects memory
leaked as below:
unreferenced object 0xffff88810f95af00 (size 64):
comm "insmod", pid 783, jiffies 4294813439 (age 65.512s)
hex dump (first 32 bytes):
a0 83 af 01 81 88 ff ff 08 af 95 0f 81 88 ff ff ................
08 af 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000031ab7788>] kmalloc_trace+0x27/0xa0
[<000000005a6e4dfe>] orangefs_sysfs_init+0x42/0x3a0
[<00000000722645ca>] 0xffffffffa02780fe
[<000000004232d9f7>] do_one_initcall+0x87/0x2a0
[<0000000054f22384>] do_init_module+0xdf/0x320
[<000000003263bdea>] load_module+0x2f98/0x3330
[<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0
[<00000000250ae02b>] do_syscall_64+0x35/0x80
[<00000000f11c03c7>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
unreferenced object 0xffff88810f95ae80 (size 64):
comm "insmod", pid 783, jiffies 4294813439 (age 65.512s)
hex dump (first 32 bytes):
c8 90 0f 02 81 88 ff ff 88 ae 95 0f 81 88 ff ff ................
88 ae 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000031ab7788>] kmalloc_trace+0x27/0xa0
[<000000001a4841fa>] orangefs_sysfs_init+0xc7/0x3a0
[<00000000722645ca>] 0xffffffffa02780fe
[<000000004232d9f7>] do_one_initcall+0x87/0x2a0
[<0000000054f22384>] do_init_module+0xdf/0x320
[<000000003263bdea>] load_module+0x2f98/0x3330
[<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0
[<00000000250ae02b>] do_syscall_64+0x35/0x80
[<00000000f11c03c7>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
unreferenced object 0xffff88810f95ae00 (size 64):
comm "insmod", pid 783, jiffies 4294813440 (age 65.511s)
hex dump (first 32 bytes):
60 87 a1 00 81 88 ff ff 08 ae 95 0f 81 88 ff ff `...............
08 ae 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000031ab7788>] kmalloc_trace+0x27/0xa0
[<000000005915e797>] orangefs_sysfs_init+0x12b/0x3a0
[<00000000722645ca>] 0xffffffffa02780fe
[<000000004232d9f7>] do_one_initcall+0x87/0x2a0
[<0000000054f22384>] do_init_module+0xdf/0x320
[<000000003263bdea>] load_module+0x2f98/0x3330
[<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0
[<00000000250ae02b>] do_syscall_64+0x35/0x80
[<00000000f11c03c7>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
unreferenced object 0xffff88810f95ad80 (size 64):
comm "insmod", pid 783, jiffies 4294813440 (age 65.511s)
hex dump (first 32 bytes):
78 90 0f 02 81 88 ff ff 88 ad 95 0f 81 88 ff ff x...............
88 ad 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000031ab7788>] kmalloc_trace+0x27/0xa0
[<000000007a14eb35>] orangefs_sysfs_init+0x1ac/0x3a0
[<00000000722645ca>] 0xffffffffa02780fe
[<000000004232d9f7>] do_one_initcall+0x87/0x2a0
[<0000000054f22384>] do_init_module+0xdf/0x320
[<000000003263bdea>] load_module+0x2f98/0x3330
[<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0
[<00000000250ae02b>] do_syscall_64+0x35/0x80
[<00000000f11c03c7>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
unreferenced object 0xffff88810f95ac00 (size 64):
comm "insmod", pid 783, jiffies 4294813440 (age 65.531s)
hex dump (first 32 bytes):
e0 ff 67 02 81 88 ff ff 08 ac 95 0f 81 88 ff ff ..g.............
08 ac 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000031ab7788>] kmalloc_trace+0x27/0xa0
[<000000001f38adcb>] orangefs_sysfs_init+0x291/0x3a0
[<00000000722645ca>] 0xffffffffa02780fe
[<000000004232d9f7>] do_one_initcall+0x87/0x2a0
[<0000000054f22384>] do_init_module+0xdf/0x320
[<000000003263bdea>] load_module+0x2f98/0x3330
[<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0
[<00000000250ae02b>] do_syscall_64+0x35/
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: libertas: fix memory leak in lbs_init_adapter()
When kfifo_alloc() failed in lbs_init_adapter(), cmd buffer is not
released. Add free memory to processing error path. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix memory leak in ocfs2_stack_glue_init()
ocfs2_table_header should be free in ocfs2_stack_glue_init() if
ocfs2_sysfs_init() failed, otherwise kmemleak will report memleak.
BUG: memory leak
unreferenced object 0xffff88810eeb5800 (size 128):
comm "modprobe", pid 4507, jiffies 4296182506 (age 55.888s)
hex dump (first 32 bytes):
c0 40 14 a0 ff ff ff ff 00 00 00 00 01 00 00 00 .@..............
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<000000001e59e1cd>] __register_sysctl_table+0xca/0xef0
[<00000000c04f70f7>] 0xffffffffa0050037
[<000000001bd12912>] do_one_initcall+0xdb/0x480
[<0000000064f766c9>] do_init_module+0x1cf/0x680
[<000000002ba52db0>] load_module+0x6441/0x6f20
[<000000009772580d>] __do_sys_finit_module+0x12f/0x1c0
[<00000000380c1f22>] do_syscall_64+0x3f/0x90
[<000000004cf473bc>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
qlcnic: prevent ->dcb use-after-free on qlcnic_dcb_enable() failure
adapter->dcb would get silently freed inside qlcnic_dcb_enable() in
case qlcnic_dcb_attach() would return an error, which always happens
under OOM conditions. This would lead to use-after-free because both
of the existing callers invoke qlcnic_dcb_get_info() on the obtained
pointer, which is potentially freed at that point.
Propagate errors from qlcnic_dcb_enable(), and instead free the dcb
pointer at callsite using qlcnic_dcb_free(). This also removes the now
unused qlcnic_clear_dcb_ops() helper, which was a simple wrapper around
kfree() also causing memory leaks for partially initialized dcb.
Found by Linux Verification Center (linuxtesting.org) with the SVACE
static analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/bios: fix a memory leak in generate_lfp_data_ptrs
When (size != 0 || ptrs->lvds_ entries != 3), the program tries to
free() the ptrs. However, the ptrs is not created by calling kzmalloc(),
but is obtained by pointer offset operation.
This may lead to memory leaks or undefined behavior.
Fix this by replacing the arguments of kfree() with ptrs_block.
(cherry picked from commit 7674cd0b7d28b952151c3df26bbfa7e07eb2b4ec) |
| NVIDIA Triton Server for Linux contains a vulnerability where an attacker may cause an improper validation of specified quantity in input. A successful exploit of this vulnerability may lead to denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix delayed allocation bug in ext4_clu_mapped for bigalloc + inline
When converting files with inline data to extents, delayed allocations
made on a file system created with both the bigalloc and inline options
can result in invalid extent status cache content, incorrect reserved
cluster counts, kernel memory leaks, and potential kernel panics.
With bigalloc, the code that determines whether a block must be
delayed allocated searches the extent tree to see if that block maps
to a previously allocated cluster. If not, the block is delayed
allocated, and otherwise, it isn't. However, if the inline option is
also used, and if the file containing the block is marked as able to
store data inline, there isn't a valid extent tree associated with
the file. The current code in ext4_clu_mapped() calls
ext4_find_extent() to search the non-existent tree for a previously
allocated cluster anyway, which typically finds nothing, as desired.
However, a side effect of the search can be to cache invalid content
from the non-existent tree (garbage) in the extent status tree,
including bogus entries in the pending reservation tree.
To fix this, avoid searching the extent tree when allocating blocks
for bigalloc + inline files that are being converted from inline to
extent mapped. |
| In the Linux kernel, the following vulnerability has been resolved:
ipc: fix memory leak in init_mqueue_fs()
When setup_mq_sysctls() failed in init_mqueue_fs(), mqueue_inode_cachep is
not released. In order to fix this issue, the release path is reordered. |