Filtered by vendor Openssl
Subscriptions
Filtered by product Openssl
Subscriptions
Total
255 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2016-2181 | 3 Openssl, Oracle, Redhat | 3 Openssl, Linux, Enterprise Linux | 2024-08-05 | N/A |
The Anti-Replay feature in the DTLS implementation in OpenSSL before 1.1.0 mishandles early use of a new epoch number in conjunction with a large sequence number, which allows remote attackers to cause a denial of service (false-positive packet drops) via spoofed DTLS records, related to rec_layer_d1.c and ssl3_record.c. | ||||
CVE-2016-2182 | 4 Hp, Openssl, Oracle and 1 more | 8 Icewall Federation Agent, Icewall Mcrp, Icewall Sso and 5 more | 2024-08-05 | N/A |
The BN_bn2dec function in crypto/bn/bn_print.c in OpenSSL before 1.1.0 does not properly validate division results, which allows remote attackers to cause a denial of service (out-of-bounds write and application crash) or possibly have unspecified other impact via unknown vectors. | ||||
CVE-2016-2177 | 4 Hp, Openssl, Oracle and 1 more | 9 Icewall Mcrp, Icewall Sso, Icewall Sso Agent Option and 6 more | 2024-08-05 | N/A |
OpenSSL through 1.0.2h incorrectly uses pointer arithmetic for heap-buffer boundary checks, which might allow remote attackers to cause a denial of service (integer overflow and application crash) or possibly have unspecified other impact by leveraging unexpected malloc behavior, related to s3_srvr.c, ssl_sess.c, and t1_lib.c. | ||||
CVE-2016-2178 | 7 Canonical, Debian, Nodejs and 4 more | 10 Ubuntu Linux, Debian Linux, Node.js and 7 more | 2024-08-05 | 5.5 Medium |
The dsa_sign_setup function in crypto/dsa/dsa_ossl.c in OpenSSL through 1.0.2h does not properly ensure the use of constant-time operations, which makes it easier for local users to discover a DSA private key via a timing side-channel attack. | ||||
CVE-2016-2109 | 2 Openssl, Redhat | 12 Openssl, Enterprise Linux, Enterprise Linux Desktop and 9 more | 2024-08-05 | N/A |
The asn1_d2i_read_bio function in crypto/asn1/a_d2i_fp.c in the ASN.1 BIO implementation in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (memory consumption) via a short invalid encoding. | ||||
CVE-2016-0799 | 3 Openssl, Pulsesecure, Redhat | 6 Openssl, Client, Steel Belted Radius and 3 more | 2024-08-05 | N/A |
The fmtstr function in crypto/bio/b_print.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g improperly calculates string lengths, which allows remote attackers to cause a denial of service (overflow and out-of-bounds read) or possibly have unspecified other impact via a long string, as demonstrated by a large amount of ASN.1 data, a different vulnerability than CVE-2016-2842. | ||||
CVE-2016-0800 | 3 Openssl, Pulsesecure, Redhat | 11 Openssl, Client, Steel Belted Radius and 8 more | 2024-08-05 | N/A |
The SSLv2 protocol, as used in OpenSSL before 1.0.1s and 1.0.2 before 1.0.2g and other products, requires a server to send a ServerVerify message before establishing that a client possesses certain plaintext RSA data, which makes it easier for remote attackers to decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, aka a "DROWN" attack. | ||||
CVE-2016-0798 | 1 Openssl | 1 Openssl | 2024-08-05 | N/A |
Memory leak in the SRP_VBASE_get_by_user implementation in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allows remote attackers to cause a denial of service (memory consumption) by providing an invalid username in a connection attempt, related to apps/s_server.c and crypto/srp/srp_vfy.c. | ||||
CVE-2016-0797 | 5 Canonical, Debian, Nodejs and 2 more | 6 Ubuntu Linux, Debian Linux, Node.js and 3 more | 2024-08-05 | 7.5 High |
Multiple integer overflows in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allow remote attackers to cause a denial of service (heap memory corruption or NULL pointer dereference) or possibly have unspecified other impact via a long digit string that is mishandled by the (1) BN_dec2bn or (2) BN_hex2bn function, related to crypto/bn/bn.h and crypto/bn/bn_print.c. | ||||
CVE-2016-0705 | 6 Canonical, Debian, Google and 3 more | 9 Ubuntu Linux, Debian Linux, Android and 6 more | 2024-08-05 | N/A |
Double free vulnerability in the dsa_priv_decode function in crypto/dsa/dsa_ameth.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via a malformed DSA private key. | ||||
CVE-2016-0701 | 1 Openssl | 1 Openssl | 2024-08-05 | N/A |
The DH_check_pub_key function in crypto/dh/dh_check.c in OpenSSL 1.0.2 before 1.0.2f does not ensure that prime numbers are appropriate for Diffie-Hellman (DH) key exchange, which makes it easier for remote attackers to discover a private DH exponent by making multiple handshakes with a peer that chose an inappropriate number, as demonstrated by a number in an X9.42 file. | ||||
CVE-2016-0702 | 5 Canonical, Debian, Nodejs and 2 more | 6 Ubuntu Linux, Debian Linux, Node.js and 3 more | 2024-08-05 | 5.1 Medium |
The MOD_EXP_CTIME_COPY_FROM_PREBUF function in crypto/bn/bn_exp.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not properly consider cache-bank access times during modular exponentiation, which makes it easier for local users to discover RSA keys by running a crafted application on the same Intel Sandy Bridge CPU core as a victim and leveraging cache-bank conflicts, aka a "CacheBleed" attack. | ||||
CVE-2016-0704 | 2 Openssl, Redhat | 6 Openssl, Enterprise Linux, Rhel Aus and 3 more | 2024-08-05 | N/A |
An oracle protection mechanism in the get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a overwrites incorrect MASTER-KEY bytes during use of export cipher suites, which makes it easier for remote attackers to decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800. | ||||
CVE-2016-0703 | 2 Openssl, Redhat | 6 Openssl, Enterprise Linux, Rhel Aus and 3 more | 2024-08-05 | N/A |
The get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a accepts a nonzero CLIENT-MASTER-KEY CLEAR-KEY-LENGTH value for an arbitrary cipher, which allows man-in-the-middle attackers to determine the MASTER-KEY value and decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800. | ||||
CVE-2018-5407 | 7 Canonical, Debian, Nodejs and 4 more | 23 Ubuntu Linux, Debian Linux, Node.js and 20 more | 2024-08-05 | 4.7 Medium |
Simultaneous Multi-threading (SMT) in processors can enable local users to exploit software vulnerable to timing attacks via a side-channel timing attack on 'port contention'. | ||||
CVE-2020-7043 | 4 Fedoraproject, Openfortivpn Project, Openssl and 1 more | 5 Fedora, Openfortivpn, Openssl and 2 more | 2024-08-04 | 9.1 Critical |
An issue was discovered in openfortivpn 1.11.0 when used with OpenSSL before 1.0.2. tunnel.c mishandles certificate validation because hostname comparisons do not consider '\0' characters, as demonstrated by a good.example.com\x00evil.example.com attack. | ||||
CVE-2020-7041 | 4 Fedoraproject, Openfortivpn Project, Openssl and 1 more | 5 Fedora, Openfortivpn, Openssl and 2 more | 2024-08-04 | 5.3 Medium |
An issue was discovered in openfortivpn 1.11.0 when used with OpenSSL 1.0.2 or later. tunnel.c mishandles certificate validation because an X509_check_host negative error code is interpreted as a successful return value. | ||||
CVE-2020-7042 | 4 Fedoraproject, Openfortivpn Project, Openssl and 1 more | 5 Fedora, Openfortivpn, Openssl and 2 more | 2024-08-04 | 5.3 Medium |
An issue was discovered in openfortivpn 1.11.0 when used with OpenSSL 1.0.2 or later. tunnel.c mishandles certificate validation because the hostname check operates on uninitialized memory. The outcome is that a valid certificate is never accepted (only a malformed certificate may be accepted). | ||||
CVE-2022-4450 | 3 Openssl, Redhat, Stormshield | 6 Openssl, Enterprise Linux, Jboss Core Services and 3 more | 2024-08-03 | 7.5 High |
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data. If the function succeeds then the "name_out", "header" and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The caller is responsible for freeing those buffers. It is possible to construct a PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex() will return a failure code but will populate the header argument with a pointer to a buffer that has already been freed. If the caller also frees this buffer then a double free will occur. This will most likely lead to a crash. This could be exploited by an attacker who has the ability to supply malicious PEM files for parsing to achieve a denial of service attack. The functions PEM_read_bio() and PEM_read() are simple wrappers around PEM_read_bio_ex() and therefore these functions are also directly affected. These functions are also called indirectly by a number of other OpenSSL functions including PEM_X509_INFO_read_bio_ex() and SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL internal uses of these functions are not vulnerable because the caller does not free the header argument if PEM_read_bio_ex() returns a failure code. These locations include the PEM_read_bio_TYPE() functions as well as the decoders introduced in OpenSSL 3.0. The OpenSSL asn1parse command line application is also impacted by this issue. | ||||
CVE-2022-4304 | 3 Openssl, Redhat, Stormshield | 8 Openssl, Enterprise Linux, Jboss Core Services and 5 more | 2024-08-03 | 5.9 Medium |
A timing based side channel exists in the OpenSSL RSA Decryption implementation which could be sufficient to recover a plaintext across a network in a Bleichenbacher style attack. To achieve a successful decryption an attacker would have to be able to send a very large number of trial messages for decryption. The vulnerability affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE. For example, in a TLS connection, RSA is commonly used by a client to send an encrypted pre-master secret to the server. An attacker that had observed a genuine connection between a client and a server could use this flaw to send trial messages to the server and record the time taken to process them. After a sufficiently large number of messages the attacker could recover the pre-master secret used for the original connection and thus be able to decrypt the application data sent over that connection. |