CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: HWS, fix complex rules rehash error flow
Moving rules from matcher to matcher should not fail.
However, if it does fail due to various reasons, the error flow
should allow the kernel to continue functioning (albeit with broken
steering rules) instead of going into series of soft lock-ups or
some other problematic behaviour.
Similar to the simple rules, complex rules rehash logic suffers
from the same problems. This patch fixes the error flow for moving
complex rules:
- If new rule creation fails before it was even enqeued, do not
poll for completion
- If TIMEOUT happened while moving the rule, no point trying
to poll for completions for other rules. Something is broken,
completion won't come, just abort the rehash sequence.
- If some other completion with error received, don't give up.
Continue handling rest of the rules to minimize the damage.
- Make sure that the first error code that was received will
be actually returned to the caller instead of replacing it
with the generic error code.
All the aforementioned issues stem from the same bad error flow,
so no point fixing them one by one and leaving partially broken
code - fixing them in one patch. |
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Optimize module load time by optimizing PLT/GOT counting
When enabling CONFIG_KASAN, CONFIG_PREEMPT_VOLUNTARY_BUILD and
CONFIG_PREEMPT_VOLUNTARY at the same time, there will be soft deadlock,
the relevant logs are as follows:
rcu: INFO: rcu_sched self-detected stall on CPU
...
Call Trace:
[<900000000024f9e4>] show_stack+0x5c/0x180
[<90000000002482f4>] dump_stack_lvl+0x94/0xbc
[<9000000000224544>] rcu_dump_cpu_stacks+0x1fc/0x280
[<900000000037ac80>] rcu_sched_clock_irq+0x720/0xf88
[<9000000000396c34>] update_process_times+0xb4/0x150
[<90000000003b2474>] tick_nohz_handler+0xf4/0x250
[<9000000000397e28>] __hrtimer_run_queues+0x1d0/0x428
[<9000000000399b2c>] hrtimer_interrupt+0x214/0x538
[<9000000000253634>] constant_timer_interrupt+0x64/0x80
[<9000000000349938>] __handle_irq_event_percpu+0x78/0x1a0
[<9000000000349a78>] handle_irq_event_percpu+0x18/0x88
[<9000000000354c00>] handle_percpu_irq+0x90/0xf0
[<9000000000348c74>] handle_irq_desc+0x94/0xb8
[<9000000001012b28>] handle_cpu_irq+0x68/0xa0
[<9000000001def8c0>] handle_loongarch_irq+0x30/0x48
[<9000000001def958>] do_vint+0x80/0xd0
[<9000000000268a0c>] kasan_mem_to_shadow.part.0+0x2c/0x2a0
[<90000000006344f4>] __asan_load8+0x4c/0x120
[<900000000025c0d0>] module_frob_arch_sections+0x5c8/0x6b8
[<90000000003895f0>] load_module+0x9e0/0x2958
[<900000000038b770>] __do_sys_init_module+0x208/0x2d0
[<9000000001df0c34>] do_syscall+0x94/0x190
[<900000000024d6fc>] handle_syscall+0xbc/0x158
After analysis, this is because the slow speed of loading the amdgpu
module leads to the long time occupation of the cpu and then the soft
deadlock.
When loading a module, module_frob_arch_sections() tries to figure out
the number of PLTs/GOTs that will be needed to handle all the RELAs. It
will call the count_max_entries() to find in an out-of-order date which
counting algorithm has O(n^2) complexity.
To make it faster, we sort the relocation list by info and addend. That
way, to check for a duplicate relocation, it just needs to compare with
the previous entry. This reduces the complexity of the algorithm to O(n
log n), as done in commit d4e0340919fb ("arm64/module: Optimize module
load time by optimizing PLT counting"). This gives sinificant reduction
in module load time for modules with large number of relocations.
After applying this patch, the soft deadlock problem has been solved,
and the kernel starts normally without "Call Trace".
Using the default configuration to test some modules, the results are as
follows:
Module Size
ip_tables 36K
fat 143K
radeon 2.5MB
amdgpu 16MB
Without this patch:
Module Module load time (ms) Count(PLTs/GOTs)
ip_tables 18 59/6
fat 0 162/14
radeon 54 1221/84
amdgpu 1411 4525/1098
With this patch:
Module Module load time (ms) Count(PLTs/GOTs)
ip_tables 18 59/6
fat 0 162/14
radeon 22 1221/84
amdgpu 45 4525/1098 |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: Make cake_enqueue return NET_XMIT_CN when past buffer_limit
The following setup can trigger a WARNING in htb_activate due to
the condition: !cl->leaf.q->q.qlen
tc qdisc del dev lo root
tc qdisc add dev lo root handle 1: htb default 1
tc class add dev lo parent 1: classid 1:1 \
htb rate 64bit
tc qdisc add dev lo parent 1:1 handle f: \
cake memlimit 1b
ping -I lo -f -c1 -s64 -W0.001 127.0.0.1
This is because the low memlimit leads to a low buffer_limit, which
causes packet dropping. However, cake_enqueue still returns
NET_XMIT_SUCCESS, causing htb_enqueue to call htb_activate with an
empty child qdisc. We should return NET_XMIT_CN when packets are
dropped from the same tin and flow.
I do not believe return value of NET_XMIT_CN is necessary for packet
drops in the case of ack filtering, as that is meant to optimize
performance, not to signal congestion. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: timer: fix ida_free call while not allocated
In the snd_utimer_create() function, if the kasprintf() function return
NULL, snd_utimer_put_id() will be called, finally use ida_free()
to free the unallocated id 0.
the syzkaller reported the following information:
------------[ cut here ]------------
ida_free called for id=0 which is not allocated.
WARNING: CPU: 1 PID: 1286 at lib/idr.c:592 ida_free+0x1fd/0x2f0 lib/idr.c:592
Modules linked in:
CPU: 1 UID: 0 PID: 1286 Comm: syz-executor164 Not tainted 6.15.8 #3 PREEMPT(lazy)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.fc42 04/01/2014
RIP: 0010:ida_free+0x1fd/0x2f0 lib/idr.c:592
Code: f8 fc 41 83 fc 3e 76 69 e8 70 b2 f8 (...)
RSP: 0018:ffffc900007f79c8 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 1ffff920000fef3b RCX: ffffffff872176a5
RDX: ffff88800369d200 RSI: 0000000000000000 RDI: ffff88800369d200
RBP: 0000000000000000 R08: ffffffff87ba60a5 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000002 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f6f1abc1740(0000) GS:ffff8880d76a0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f6f1ad7a784 CR3: 000000007a6e2000 CR4: 00000000000006f0
Call Trace:
<TASK>
snd_utimer_put_id sound/core/timer.c:2043 [inline] [snd_timer]
snd_utimer_create+0x59b/0x6a0 sound/core/timer.c:2184 [snd_timer]
snd_utimer_ioctl_create sound/core/timer.c:2202 [inline] [snd_timer]
__snd_timer_user_ioctl.isra.0+0x724/0x1340 sound/core/timer.c:2287 [snd_timer]
snd_timer_user_ioctl+0x75/0xc0 sound/core/timer.c:2298 [snd_timer]
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__x64_sys_ioctl+0x198/0x200 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0x7b/0x160 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x76/0x7e
[...]
The utimer->id should be set properly before the kasprintf() function,
ensures the snd_utimer_put_id() function will free the allocated id. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: ctnetlink: remove refcounting in expectation dumpers
Same pattern as previous patch: do not keep the expectation object
alive via refcount, only store a cookie value and then use that
as the skip hint for dump resumption.
AFAICS this has the same issue as the one resolved in the conntrack
dumper, when we do
if (!refcount_inc_not_zero(&exp->use))
to increment the refcount, there is a chance that exp == last, which
causes a double-increment of the refcount and subsequent memory leak. |
In the Linux kernel, the following vulnerability has been resolved:
ACPI: APEI: send SIGBUS to current task if synchronous memory error not recovered
If a synchronous error is detected as a result of user-space process
triggering a 2-bit uncorrected error, the CPU will take a synchronous
error exception such as Synchronous External Abort (SEA) on Arm64. The
kernel will queue a memory_failure() work which poisons the related
page, unmaps the page, and then sends a SIGBUS to the process, so that
a system wide panic can be avoided.
However, no memory_failure() work will be queued when abnormal
synchronous errors occur. These errors can include situations like
invalid PA, unexpected severity, no memory failure config support,
invalid GUID section, etc. In such a case, the user-space process will
trigger SEA again. This loop can potentially exceed the platform
firmware threshold or even trigger a kernel hard lockup, leading to a
system reboot.
Fix it by performing a force kill if no memory_failure() work is queued
for synchronous errors.
[ rjw: Changelog edits ] |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: add null check
[WHY]
Prevents null pointer dereferences to enhance function robustness
[HOW]
Adds early null check and return false if invalid. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Decrement TID on RX peer frag setup error handling
Currently, TID is not decremented before peer cleanup, during error
handling path of ath12k_dp_rx_peer_frag_setup(). This could lead to
out-of-bounds access in peer->rx_tid[].
Hence, add a decrement operation for TID, before peer cleanup to
ensures proper cleanup and prevents out-of-bounds access issues when
the RX peer frag setup fails.
Found during code review. Compile tested only. |
In the Linux kernel, the following vulnerability has been resolved:
usb: core: config: Prevent OOB read in SS endpoint companion parsing
usb_parse_ss_endpoint_companion() checks descriptor type before length,
enabling a potentially odd read outside of the buffer size.
Fix this up by checking the size first before looking at any of the
fields in the descriptor. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: qgroup: fix race between quota disable and quota rescan ioctl
There's a race between a task disabling quotas and another running the
rescan ioctl that can result in a use-after-free of qgroup records from
the fs_info->qgroup_tree rbtree.
This happens as follows:
1) Task A enters btrfs_ioctl_quota_rescan() -> btrfs_qgroup_rescan();
2) Task B enters btrfs_quota_disable() and calls
btrfs_qgroup_wait_for_completion(), which does nothing because at that
point fs_info->qgroup_rescan_running is false (it wasn't set yet by
task A);
3) Task B calls btrfs_free_qgroup_config() which starts freeing qgroups
from fs_info->qgroup_tree without taking the lock fs_info->qgroup_lock;
4) Task A enters qgroup_rescan_zero_tracking() which starts iterating
the fs_info->qgroup_tree tree while holding fs_info->qgroup_lock,
but task B is freeing qgroup records from that tree without holding
the lock, resulting in a use-after-free.
Fix this by taking fs_info->qgroup_lock at btrfs_free_qgroup_config().
Also at btrfs_qgroup_rescan() don't start the rescan worker if quotas
were already disabled. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/siw: Fix the sendmsg byte count in siw_tcp_sendpages
Ever since commit c2ff29e99a76 ("siw: Inline do_tcp_sendpages()"),
we have been doing this:
static int siw_tcp_sendpages(struct socket *s, struct page **page, int offset,
size_t size)
[...]
/* Calculate the number of bytes we need to push, for this page
* specifically */
size_t bytes = min_t(size_t, PAGE_SIZE - offset, size);
/* If we can't splice it, then copy it in, as normal */
if (!sendpage_ok(page[i]))
msg.msg_flags &= ~MSG_SPLICE_PAGES;
/* Set the bvec pointing to the page, with len $bytes */
bvec_set_page(&bvec, page[i], bytes, offset);
/* Set the iter to $size, aka the size of the whole sendpages (!!!) */
iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
try_page_again:
lock_sock(sk);
/* Sendmsg with $size size (!!!) */
rv = tcp_sendmsg_locked(sk, &msg, size);
This means we've been sending oversized iov_iters and tcp_sendmsg calls
for a while. This has a been a benign bug because sendpage_ok() always
returned true. With the recent slab allocator changes being slowly
introduced into next (that disallow sendpage on large kmalloc
allocations), we have recently hit out-of-bounds crashes, due to slight
differences in iov_iter behavior between the MSG_SPLICE_PAGES and
"regular" copy paths:
(MSG_SPLICE_PAGES)
skb_splice_from_iter
iov_iter_extract_pages
iov_iter_extract_bvec_pages
uses i->nr_segs to correctly stop in its tracks before OoB'ing everywhere
skb_splice_from_iter gets a "short" read
(!MSG_SPLICE_PAGES)
skb_copy_to_page_nocache copy=iov_iter_count
[...]
copy_from_iter
/* this doesn't help */
if (unlikely(iter->count < len))
len = iter->count;
iterate_bvec
... and we run off the bvecs
Fix this by properly setting the iov_iter's byte count, plus sending the
correct byte count to tcp_sendmsg_locked. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Validate UAC3 cluster segment descriptors
UAC3 class segment descriptors need to be verified whether their sizes
match with the declared lengths and whether they fit with the
allocated buffer sizes, too. Otherwise malicious firmware may lead to
the unexpected OOB accesses. |
In the Linux kernel, the following vulnerability has been resolved:
fs: Prevent file descriptor table allocations exceeding INT_MAX
When sysctl_nr_open is set to a very high value (for example, 1073741816
as set by systemd), processes attempting to use file descriptors near
the limit can trigger massive memory allocation attempts that exceed
INT_MAX, resulting in a WARNING in mm/slub.c:
WARNING: CPU: 0 PID: 44 at mm/slub.c:5027 __kvmalloc_node_noprof+0x21a/0x288
This happens because kvmalloc_array() and kvmalloc() check if the
requested size exceeds INT_MAX and emit a warning when the allocation is
not flagged with __GFP_NOWARN.
Specifically, when nr_open is set to 1073741816 (0x3ffffff8) and a
process calls dup2(oldfd, 1073741880), the kernel attempts to allocate:
- File descriptor array: 1073741880 * 8 bytes = 8,589,935,040 bytes
- Multiple bitmaps: ~400MB
- Total allocation size: > 8GB (exceeding INT_MAX = 2,147,483,647)
Reproducer:
1. Set /proc/sys/fs/nr_open to 1073741816:
# echo 1073741816 > /proc/sys/fs/nr_open
2. Run a program that uses a high file descriptor:
#include <unistd.h>
#include <sys/resource.h>
int main() {
struct rlimit rlim = {1073741824, 1073741824};
setrlimit(RLIMIT_NOFILE, &rlim);
dup2(2, 1073741880); // Triggers the warning
return 0;
}
3. Observe WARNING in dmesg at mm/slub.c:5027
systemd commit a8b627a introduced automatic bumping of fs.nr_open to the
maximum possible value. The rationale was that systems with memory
control groups (memcg) no longer need separate file descriptor limits
since memory is properly accounted. However, this change overlooked
that:
1. The kernel's allocation functions still enforce INT_MAX as a maximum
size regardless of memcg accounting
2. Programs and tests that legitimately test file descriptor limits can
inadvertently trigger massive allocations
3. The resulting allocations (>8GB) are impractical and will always fail
systemd's algorithm starts with INT_MAX and keeps halving the value
until the kernel accepts it. On most systems, this results in nr_open
being set to 1073741816 (0x3ffffff8), which is just under 1GB of file
descriptors.
While processes rarely use file descriptors near this limit in normal
operation, certain selftests (like
tools/testing/selftests/core/unshare_test.c) and programs that test file
descriptor limits can trigger this issue.
Fix this by adding a check in alloc_fdtable() to ensure the requested
allocation size does not exceed INT_MAX. This causes the operation to
fail with -EMFILE instead of triggering a kernel warning and avoids the
impractical >8GB memory allocation request. |
In the Linux kernel, the following vulnerability has been resolved:
mm/smaps: fix race between smaps_hugetlb_range and migration
smaps_hugetlb_range() handles the pte without holdling ptl, and may be
concurrenct with migration, leaing to BUG_ON in pfn_swap_entry_to_page().
The race is as follows.
smaps_hugetlb_range migrate_pages
huge_ptep_get
remove_migration_ptes
folio_unlock
pfn_swap_entry_folio
BUG_ON
To fix it, hold ptl lock in smaps_hugetlb_range(). |
In the Linux kernel, the following vulnerability has been resolved:
gfs2: Set .migrate_folio in gfs2_{rgrp,meta}_aops
Clears up the warning added in 7ee3647243e5 ("migrate: Remove call to
->writepage") that occurs in various xfstests, causing "something found
in dmesg" failures.
[ 341.136573] gfs2_meta_aops does not implement migrate_folio
[ 341.136953] WARNING: CPU: 1 PID: 36 at mm/migrate.c:944 move_to_new_folio+0x2f8/0x300 |
In the Linux kernel, the following vulnerability has been resolved:
ARM: rockchip: fix kernel hang during smp initialization
In order to bring up secondary CPUs main CPU write trampoline
code to SRAM. The trampoline code is written while secondary
CPUs are powered on (at least that true for RK3188 CPU).
Sometimes that leads to kernel hang. Probably because secondary
CPU execute trampoline code while kernel doesn't expect.
The patch moves SRAM initialization step to the point where all
secondary CPUs are powered down.
That fixes rarely hangs on RK3188:
[ 0.091568] CPU0: thread -1, cpu 0, socket 0, mpidr 80000000
[ 0.091996] rockchip_smp_prepare_cpus: ncores 4 |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda/ca0132: Fix buffer overflow in add_tuning_control
The 'sprintf' call in 'add_tuning_control' may exceed the 44-byte
buffer if either string argument is too long. This triggers a compiler
warning.
Replaced 'sprintf' with 'snprintf' to limit string lengths to prevent
overflow. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Correct tid cleanup when tid setup fails
Currently, if any error occurs during ath12k_dp_rx_peer_tid_setup(),
the tid value is already incremented, even though the corresponding
TID is not actually allocated. Proceed to
ath12k_dp_rx_peer_tid_delete() starting from unallocated tid,
which might leads to freeing unallocated TID and cause potential
crash or out-of-bounds access.
Hence, fix by correctly decrementing tid before cleanup to match only
the successfully allocated TIDs.
Also, remove tid-- from failure case of ath12k_dp_rx_peer_frag_setup(),
as decrementing the tid before cleanup in loop will take care of this.
Compile tested only. |
In the Linux kernel, the following vulnerability has been resolved:
rcu: Protect ->defer_qs_iw_pending from data race
On kernels built with CONFIG_IRQ_WORK=y, when rcu_read_unlock() is
invoked within an interrupts-disabled region of code [1], it will invoke
rcu_read_unlock_special(), which uses an irq-work handler to force the
system to notice when the RCU read-side critical section actually ends.
That end won't happen until interrupts are enabled at the soonest.
In some kernels, such as those booted with rcutree.use_softirq=y, the
irq-work handler is used unconditionally.
The per-CPU rcu_data structure's ->defer_qs_iw_pending field is
updated by the irq-work handler and is both read and updated by
rcu_read_unlock_special(). This resulted in the following KCSAN splat:
------------------------------------------------------------------------
BUG: KCSAN: data-race in rcu_preempt_deferred_qs_handler / rcu_read_unlock_special
read to 0xffff96b95f42d8d8 of 1 bytes by task 90 on cpu 8:
rcu_read_unlock_special+0x175/0x260
__rcu_read_unlock+0x92/0xa0
rt_spin_unlock+0x9b/0xc0
__local_bh_enable+0x10d/0x170
__local_bh_enable_ip+0xfb/0x150
rcu_do_batch+0x595/0xc40
rcu_cpu_kthread+0x4e9/0x830
smpboot_thread_fn+0x24d/0x3b0
kthread+0x3bd/0x410
ret_from_fork+0x35/0x40
ret_from_fork_asm+0x1a/0x30
write to 0xffff96b95f42d8d8 of 1 bytes by task 88 on cpu 8:
rcu_preempt_deferred_qs_handler+0x1e/0x30
irq_work_single+0xaf/0x160
run_irq_workd+0x91/0xc0
smpboot_thread_fn+0x24d/0x3b0
kthread+0x3bd/0x410
ret_from_fork+0x35/0x40
ret_from_fork_asm+0x1a/0x30
no locks held by irq_work/8/88.
irq event stamp: 200272
hardirqs last enabled at (200272): [<ffffffffb0f56121>] finish_task_switch+0x131/0x320
hardirqs last disabled at (200271): [<ffffffffb25c7859>] __schedule+0x129/0xd70
softirqs last enabled at (0): [<ffffffffb0ee093f>] copy_process+0x4df/0x1cc0
softirqs last disabled at (0): [<0000000000000000>] 0x0
------------------------------------------------------------------------
The problem is that irq-work handlers run with interrupts enabled, which
means that rcu_preempt_deferred_qs_handler() could be interrupted,
and that interrupt handler might contain an RCU read-side critical
section, which might invoke rcu_read_unlock_special(). In the strict
KCSAN mode of operation used by RCU, this constitutes a data race on
the ->defer_qs_iw_pending field.
This commit therefore disables interrupts across the portion of the
rcu_preempt_deferred_qs_handler() that updates the ->defer_qs_iw_pending
field. This suffices because this handler is not a fast path. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Forget ranges when refining tnum after JSET
Syzbot reported a kernel warning due to a range invariant violation on
the following BPF program.
0: call bpf_get_netns_cookie
1: if r0 == 0 goto <exit>
2: if r0 & Oxffffffff goto <exit>
The issue is on the path where we fall through both jumps.
That path is unreachable at runtime: after insn 1, we know r0 != 0, but
with the sign extension on the jset, we would only fallthrough insn 2
if r0 == 0. Unfortunately, is_branch_taken() isn't currently able to
figure this out, so the verifier walks all branches. The verifier then
refines the register bounds using the second condition and we end
up with inconsistent bounds on this unreachable path:
1: if r0 == 0 goto <exit>
r0: u64=[0x1, 0xffffffffffffffff] var_off=(0, 0xffffffffffffffff)
2: if r0 & 0xffffffff goto <exit>
r0 before reg_bounds_sync: u64=[0x1, 0xffffffffffffffff] var_off=(0, 0)
r0 after reg_bounds_sync: u64=[0x1, 0] var_off=(0, 0)
Improving the range refinement for JSET to cover all cases is tricky. We
also don't expect many users to rely on JSET given LLVM doesn't generate
those instructions. So instead of improving the range refinement for
JSETs, Eduard suggested we forget the ranges whenever we're narrowing
tnums after a JSET. This patch implements that approach. |