| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An out-of-memory flaw was found in libtiff that could be triggered by passing a crafted tiff file to the TIFFRasterScanlineSize64() API. This flaw allows a remote attacker to cause a denial of service via a crafted input with a size smaller than 379 KB. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. Filesystem bugs due to corrupt images are not considered a CVE for any filesystem that is only mountable by CAP_SYS_ADMIN in the initial user namespace. That includes delegated mounting. |
| ESF-IDF is the Espressif Internet of Things (IOT) Development Framework. In versions 5.5.1, 5.4.3, 5.3.4, 5.2.6, 5.1.6, and earlier, in the ESP-IDF Bluetooth host stack (BlueDroid), the function bta_dm_sdp_result() used a fixed-size array uuid_list[32][MAX_UUID_SIZE] to store discovered service UUIDs during the SDP (Service Discovery Protocol) process. On modern Bluetooth devices, it is possible for the number of available services to exceed this fixed limit (32). In such cases, if more than 32 services are discovered, subsequent writes to uuid_list could exceed the bounds of the array, resulting in a potential out-of-bounds write condition. |
| ESF-IDF is the Espressif Internet of Things (IOT) Development Framework. In versions 5.5.1, 5.4.3, 5.3.4, 5.2.6, 5.1.6, and earlier, in the avrc_vendor_msg() function of the ESP-IDF BlueDroid AVRCP stack, the allocated buffer size was validated using AVRC_MIN_CMD_LEN (20 bytes). However, the actual fixed header data written before the vendor payload exceeds this value. This totals 29 bytes written before p_msg->p_vendor_data is copied. Using the old AVRC_MIN_CMD_LEN could allow an out-of-bounds write if vendor_len approaches the buffer limit. For commands where vendor_len is large, the original buffer allocation may be insufficient, causing writes beyond the allocated memory. This can lead to memory corruption, crashes, or other undefined behavior. The overflow could be larger when assertions are disabled. |
| A maliciously crafted PRT file, when parsed through certain Autodesk products, can force a Memory Corruption vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process. |
| A maliciously crafted PRT file, when parsed through certain Autodesk products, can force a Memory corruption vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process. |
| A maliciously crafted SLDPRT file, when parsed through certain Autodesk products, can force a Memory corruption vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process. |
| A maliciously crafted SLDPRT file, when parsed through certain Autodesk products, can force a Memory corruption vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process. |
| A maliciously crafted CATPRODUCT file, when parsed in CC5Dll.dll through Autodesk applications, can lead to a memory corruption vulnerability by write access violation. This vulnerability, in conjunction with other vulnerabilities, can lead to code execution in the context of the current process. |
| A maliciously crafted X_B file, when parsed in pskernel.DLL through Autodesk applications, can lead to a memory corruption vulnerability by write access violation. This vulnerability, in conjunction with other vulnerabilities, can lead to code execution in the context of the current process. |
| A maliciously crafted SLDASM or SLDPRT file, when parsed in ODXSW_DLL.dll through Autodesk applications, can lead to a memory corruption vulnerability by write access violation. This vulnerability, along with other vulnerabilities, can lead to code execution in the current process. |
| A maliciously crafted 3DM file, when parsed in opennurbs.dll and ASMkern229A.dll through Autodesk applications, can lead to a memory corruption vulnerability by write access violation. This vulnerability, along with other vulnerabilities, can lead to code execution in the current process. |
| A maliciously crafted CATPRODUCT file, when parsed in CC5Dll.dll through Autodesk applications, can lead to a memory corruption vulnerability by write access violation. This vulnerability, in conjunction with other vulnerabilities, can lead to code execution in the context of the current process. |
| A maliciously crafted CATPART, X_B and STEP, when parsed in ASMKERN228A.dll and ASMKERN229A.dll through Autodesk applications, can lead to a memory corruption vulnerability by write access violation. This vulnerability, in conjunction with other vulnerabilities, can lead to code execution in the context of the current process. |
| A maliciously crafted DWFX file, when parsed through Autodesk Navisworks, can force a Memory Corruption vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process. |
| A OS Command Injection vulnerability was discovered in Artica Proxy 4.30.000000. Attackers can execute OS commands in cyrus.events.php with GET param logs and POST param rp. |
| A flaw was found in polkit. When processing an XML policy with 32 or more nested elements in depth, an out-of-bounds write can be triggered. This issue can lead to a crash or other unexpected behavior, and arbitrary code execution is not discarded. To exploit this flaw, a high-privilege account is needed as it's required to place the malicious policy file properly. |
| A vulnerability was found in perl 5.30.0 through 5.38.0. This issue occurs when a crafted regular expression is compiled by perl, which can allow an attacker controlled byte buffer overflow in a heap allocated buffer. |
| ZesleCP 3.1.9 contains an authenticated remote code execution vulnerability that allows attackers to create malicious FTP accounts with shell injection payloads. Attackers can exploit the FTP account creation endpoint by injecting a reverse shell command that establishes a network connection to a specified listening host. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/hdmi: fix memory corruption with too many bridges
Add the missing sanity check on the bridge counter to avoid corrupting
data beyond the fixed-sized bridge array in case there are ever more
than eight bridges.
Patchwork: https://patchwork.freedesktop.org/patch/502670/ |