| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
afs: Fix corruption in reads at fpos 2G-4G from an OpenAFS server
AFS-3 has two data fetch RPC variants, FS.FetchData and FS.FetchData64, and
Linux's afs client switches between them when talking to a non-YFS server
if the read size, the file position or the sum of the two have the upper 32
bits set of the 64-bit value.
This is a problem, however, since the file position and length fields of
FS.FetchData are *signed* 32-bit values.
Fix this by capturing the capability bits obtained from the fileserver when
it's sent an FS.GetCapabilities RPC, rather than just discarding them, and
then picking out the VICED_CAPABILITY_64BITFILES flag. This can then be
used to decide whether to use FS.FetchData or FS.FetchData64 - and also
FS.StoreData or FS.StoreData64 - rather than using upper_32_bits() to
switch on the parameter values.
This capabilities flag could also be used to limit the maximum size of the
file, but all servers must be checked for that.
Note that the issue does not exist with FS.StoreData - that uses *unsigned*
32-bit values. It's also not a problem with Auristor servers as its
YFS.FetchData64 op uses unsigned 64-bit values.
This can be tested by cloning a git repo through an OpenAFS client to an
OpenAFS server and then doing "git status" on it from a Linux afs
client[1]. Provided the clone has a pack file that's in the 2G-4G range,
the git status will show errors like:
error: packfile .git/objects/pack/pack-5e813c51d12b6847bbc0fcd97c2bca66da50079c.pack does not match index
error: packfile .git/objects/pack/pack-5e813c51d12b6847bbc0fcd97c2bca66da50079c.pack does not match index
This can be observed in the server's FileLog with something like the
following appearing:
Sun Aug 29 19:31:39 2021 SRXAFS_FetchData, Fid = 2303380852.491776.3263114, Host 192.168.11.201:7001, Id 1001
Sun Aug 29 19:31:39 2021 CheckRights: len=0, for host=192.168.11.201:7001
Sun Aug 29 19:31:39 2021 FetchData_RXStyle: Pos 18446744071815340032, Len 3154
Sun Aug 29 19:31:39 2021 FetchData_RXStyle: file size 2400758866
...
Sun Aug 29 19:31:40 2021 SRXAFS_FetchData returns 5
Note the file position of 18446744071815340032. This is the requested file
position sign-extended. |
| In the Linux kernel, the following vulnerability has been resolved:
net: txgbe: remove separate irq request for MSI and INTx
When using MSI or INTx interrupts, request_irq() for pdev->irq will
conflict with request_threaded_irq() for txgbe->misc.irq, to cause
system crash. So remove txgbe_request_irq() for MSI/INTx case, and
rename txgbe_request_msix_irqs() since it only request for queue irqs.
Add wx->misc_irq_domain to determine whether the driver creates an IRQ
domain and threaded request the IRQs. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: set correct id, uid and cruid for multiuser automounts
When uid, gid and cruid are not specified, we need to dynamically
set them into the filesystem context used for automounting otherwise
they'll end up reusing the values from the parent mount. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential bug in end_buffer_async_write
According to a syzbot report, end_buffer_async_write(), which handles the
completion of block device writes, may detect abnormal condition of the
buffer async_write flag and cause a BUG_ON failure when using nilfs2.
Nilfs2 itself does not use end_buffer_async_write(). But, the async_write
flag is now used as a marker by commit 7f42ec394156 ("nilfs2: fix issue
with race condition of competition between segments for dirty blocks") as
a means of resolving double list insertion of dirty blocks in
nilfs_lookup_dirty_data_buffers() and nilfs_lookup_node_buffers() and the
resulting crash.
This modification is safe as long as it is used for file data and b-tree
node blocks where the page caches are independent. However, it was
irrelevant and redundant to also introduce async_write for segment summary
and super root blocks that share buffers with the backing device. This
led to the possibility that the BUG_ON check in end_buffer_async_write
would fail as described above, if independent writebacks of the backing
device occurred in parallel.
The use of async_write for segment summary buffers has already been
removed in a previous change.
Fix this issue by removing the manipulation of the async_write flag for
the remaining super root block buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: host: Add alignment check for event ring read pointer
Though we do check the event ring read pointer by "is_valid_ring_ptr"
to make sure it is in the buffer range, but there is another risk the
pointer may be not aligned. Since we are expecting event ring elements
are 128 bits(struct mhi_ring_element) aligned, an unaligned read pointer
could lead to multiple issues like DoS or ring buffer memory corruption.
So add a alignment check for event ring read pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
fork: only invoke khugepaged, ksm hooks if no error
There is no reason to invoke these hooks early against an mm that is in an
incomplete state.
The change in commit d24062914837 ("fork: use __mt_dup() to duplicate
maple tree in dup_mmap()") makes this more pertinent as we may be in a
state where entries in the maple tree are not yet consistent.
Their placement early in dup_mmap() only appears to have been meaningful
for early error checking, and since functionally it'd require a very small
allocation to fail (in practice 'too small to fail') that'd only occur in
the most dire circumstances, meaning the fork would fail or be OOM'd in
any case.
Since both khugepaged and KSM tracking are there to provide optimisations
to memory performance rather than critical functionality, it doesn't
really matter all that much if, under such dire memory pressure, we fail
to register an mm with these.
As a result, we follow the example of commit d2081b2bf819 ("mm:
khugepaged: make khugepaged_enter() void function") and make ksm_fork() a
void function also.
We only expose the mm to these functions once we are done with them and
only if no error occurred in the fork operation. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: core: Reference count the zone in thermal_zone_get_by_id()
There are places in the thermal netlink code where nothing prevents
the thermal zone object from going away while being accessed after it
has been returned by thermal_zone_get_by_id().
To address this, make thermal_zone_get_by_id() get a reference on the
thermal zone device object to be returned with the help of get_device(),
under thermal_list_lock, and adjust all of its callers to this change
with the help of the cleanup.h infrastructure. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: Remove LED entry from LEDs list on unregister
Commit c938ab4da0eb ("net: phy: Manual remove LEDs to ensure correct
ordering") correctly fixed a problem with using devm_ but missed
removing the LED entry from the LEDs list.
This cause kernel panic on specific scenario where the port for the PHY
is torn down and up and the kmod for the PHY is removed.
On setting the port down the first time, the assosiacted LEDs are
correctly unregistered. The associated kmod for the PHY is now removed.
The kmod is now added again and the port is now put up, the associated LED
are registered again.
On putting the port down again for the second time after these step, the
LED list now have 4 elements. With the first 2 already unregistered
previously and the 2 new one registered again.
This cause a kernel panic as the first 2 element should have been
removed.
Fix this by correctly removing the element when LED is unregistered. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btintel_pcie: Allocate memory for driver private data
Fix driver not allocating memory for struct btintel_data which is used
to store internal data. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "serial: 8250_omap: Set the console genpd always on if no console suspend"
This reverts commit 68e6939ea9ec3d6579eadeab16060339cdeaf940.
Kevin reported that this causes a crash during suspend on platforms that
dont use PM domains. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Disable preemption while updating GPU stats
We forgot to disable preemption around the write_seqcount_begin/end() pair
while updating GPU stats:
[ ] WARNING: CPU: 2 PID: 12 at include/linux/seqlock.h:221 __seqprop_assert.isra.0+0x128/0x150 [v3d]
[ ] Workqueue: v3d_bin drm_sched_run_job_work [gpu_sched]
<...snip...>
[ ] Call trace:
[ ] __seqprop_assert.isra.0+0x128/0x150 [v3d]
[ ] v3d_job_start_stats.isra.0+0x90/0x218 [v3d]
[ ] v3d_bin_job_run+0x23c/0x388 [v3d]
[ ] drm_sched_run_job_work+0x520/0x6d0 [gpu_sched]
[ ] process_one_work+0x62c/0xb48
[ ] worker_thread+0x468/0x5b0
[ ] kthread+0x1c4/0x1e0
[ ] ret_from_fork+0x10/0x20
Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix soft lockup under heavy CEQE load
CEQEs are handled in interrupt handler currently. This may cause the
CPU core staying in interrupt context too long and lead to soft lockup
under heavy load.
Handle CEQEs in BH workqueue and set an upper limit for the number of
CEQE handled by a single call of work handler. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: don't unoptimize message in spi_async()
Calling spi_maybe_unoptimize_message() in spi_async() is wrong because
the message is likely to be in the queue and not transferred yet. This
can corrupt the message while it is being used by the controller driver.
spi_maybe_unoptimize_message() is already called in the correct place
in spi_finalize_current_message() to balance the call to
spi_maybe_optimize_message() in spi_async(). |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: sdhci: Fix max_seg_size for 64KiB PAGE_SIZE
blk_queue_max_segment_size() ensured:
if (max_size < PAGE_SIZE)
max_size = PAGE_SIZE;
whereas:
blk_validate_limits() makes it an error:
if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
return -EINVAL;
The change from one to the other, exposed sdhci which was setting maximum
segment size too low in some circumstances.
Fix the maximum segment size when it is too low. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/shmem: disable PMD-sized page cache if needed
For shmem files, it's possible that PMD-sized page cache can't be
supported by xarray. For example, 512MB page cache on ARM64 when the base
page size is 64KB can't be supported by xarray. It leads to errors as the
following messages indicate when this sort of xarray entry is split.
WARNING: CPU: 34 PID: 7578 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128
Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 \
nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject \
nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \
ip_set rfkill nf_tables nfnetlink vfat fat virtio_balloon drm fuse xfs \
libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 sha1_ce virtio_net \
net_failover virtio_console virtio_blk failover dimlib virtio_mmio
CPU: 34 PID: 7578 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #9
Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024
pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : xas_split_alloc+0xf8/0x128
lr : split_huge_page_to_list_to_order+0x1c4/0x720
sp : ffff8000882af5f0
x29: ffff8000882af5f0 x28: ffff8000882af650 x27: ffff8000882af768
x26: 0000000000000cc0 x25: 000000000000000d x24: ffff00010625b858
x23: ffff8000882af650 x22: ffffffdfc0900000 x21: 0000000000000000
x20: 0000000000000000 x19: ffffffdfc0900000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000018000000000 x15: 52f8004000000000
x14: 0000e00000000000 x13: 0000000000002000 x12: 0000000000000020
x11: 52f8000000000000 x10: 52f8e1c0ffff6000 x9 : ffffbeb9619a681c
x8 : 0000000000000003 x7 : 0000000000000000 x6 : ffff00010b02ddb0
x5 : ffffbeb96395e378 x4 : 0000000000000000 x3 : 0000000000000cc0
x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000
Call trace:
xas_split_alloc+0xf8/0x128
split_huge_page_to_list_to_order+0x1c4/0x720
truncate_inode_partial_folio+0xdc/0x160
shmem_undo_range+0x2bc/0x6a8
shmem_fallocate+0x134/0x430
vfs_fallocate+0x124/0x2e8
ksys_fallocate+0x4c/0xa0
__arm64_sys_fallocate+0x24/0x38
invoke_syscall.constprop.0+0x7c/0xd8
do_el0_svc+0xb4/0xd0
el0_svc+0x44/0x1d8
el0t_64_sync_handler+0x134/0x150
el0t_64_sync+0x17c/0x180
Fix it by disabling PMD-sized page cache when HPAGE_PMD_ORDER is larger
than MAX_PAGECACHE_ORDER. As Matthew Wilcox pointed, the page cache in a
shmem file isn't represented by a multi-index entry and doesn't have this
limitation when the xarry entry is split until commit 6b24ca4a1a8d ("mm:
Use multi-index entries in the page cache"). |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fail bpf_timer_cancel when callback is being cancelled
Given a schedule:
timer1 cb timer2 cb
bpf_timer_cancel(timer2); bpf_timer_cancel(timer1);
Both bpf_timer_cancel calls would wait for the other callback to finish
executing, introducing a lockup.
Add an atomic_t count named 'cancelling' in bpf_hrtimer. This keeps
track of all in-flight cancellation requests for a given BPF timer.
Whenever cancelling a BPF timer, we must check if we have outstanding
cancellation requests, and if so, we must fail the operation with an
error (-EDEADLK) since cancellation is synchronous and waits for the
callback to finish executing. This implies that we can enter a deadlock
situation involving two or more timer callbacks executing in parallel
and attempting to cancel one another.
Note that we avoid incrementing the cancelling counter for the target
timer (the one being cancelled) if bpf_timer_cancel is not invoked from
a callback, to avoid spurious errors. The whole point of detecting
cur->cancelling and returning -EDEADLK is to not enter a busy wait loop
(which may or may not lead to a lockup). This does not apply in case the
caller is in a non-callback context, the other side can continue to
cancel as it sees fit without running into errors.
Background on prior attempts:
Earlier versions of this patch used a bool 'cancelling' bit and used the
following pattern under timer->lock to publish cancellation status.
lock(t->lock);
t->cancelling = true;
mb();
if (cur->cancelling)
return -EDEADLK;
unlock(t->lock);
hrtimer_cancel(t->timer);
t->cancelling = false;
The store outside the critical section could overwrite a parallel
requests t->cancelling assignment to true, to ensure the parallely
executing callback observes its cancellation status.
It would be necessary to clear this cancelling bit once hrtimer_cancel
is done, but lack of serialization introduced races. Another option was
explored where bpf_timer_start would clear the bit when (re)starting the
timer under timer->lock. This would ensure serialized access to the
cancelling bit, but may allow it to be cleared before in-flight
hrtimer_cancel has finished executing, such that lockups can occur
again.
Thus, we choose an atomic counter to keep track of all outstanding
cancellation requests and use it to prevent lockups in case callbacks
attempt to cancel each other while executing in parallel. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/mm: Add NULL pointer check to crst_table_free() base_crst_free()
crst_table_free() used to work with NULL pointers before the conversion
to ptdescs. Since crst_table_free() can be called with a NULL pointer
(error handling in crst_table_upgrade() add an explicit check.
Also add the same check to base_crst_free() for consistency reasons.
In real life this should not happen, since order two GFP_KERNEL
allocations will not fail, unless FAIL_PAGE_ALLOC is enabled and used. |
| In the Linux kernel, the following vulnerability has been resolved:
filemap: replace pte_offset_map() with pte_offset_map_nolock()
The vmf->ptl in filemap_fault_recheck_pte_none() is still set from
handle_pte_fault(). But at the same time, we did a pte_unmap(vmf->pte).
After a pte_unmap(vmf->pte) unmap and rcu_read_unlock(), the page table
may be racily changed and vmf->ptl maybe fails to protect the actual page
table. Fix this by replacing pte_offset_map() with
pte_offset_map_nolock().
As David said, the PTL pointer might be stale so if we continue to use
it infilemap_fault_recheck_pte_none(), it might trigger UAF. Also, if
the PTL fails, the issue fixed by commit 58f327f2ce80 ("filemap: avoid
unnecessary major faults in filemap_fault()") might reappear. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/pkey: Use kfree_sensitive() to fix Coccinelle warnings
Replace memzero_explicit() and kfree() with kfree_sensitive() to fix
warnings reported by Coccinelle:
WARNING opportunity for kfree_sensitive/kvfree_sensitive (line 1506)
WARNING opportunity for kfree_sensitive/kvfree_sensitive (line 1643)
WARNING opportunity for kfree_sensitive/kvfree_sensitive (line 1770) |
| In the Linux kernel, the following vulnerability has been resolved:
iio: temperature: mlx90635: Fix ERR_PTR dereference in mlx90635_probe()
When devm_regmap_init_i2c() fails, regmap_ee could be error pointer,
instead of checking for IS_ERR(regmap_ee), regmap is checked which looks
like a copy paste error. |