| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| It has been found that in openshift-enterprise version 3.11 and openshift-enterprise versions 4.1 up to, including 4.3, multiple containers modify the permissions of /etc/passwd to make them modifiable by users other than root. An attacker with access to the running container can exploit this to modify /etc/passwd to add a user and escalate their privileges. This CVE is specific to the openshift/apb-tools-container. |
| A vulnerability was found in openshift/template-service-broker-operator in all 4.x.x versions prior to 4.3.0, where an insecure modification vulnerability in the /etc/passwd file was found in the openshift/template-service-broker-operator. An attacker with access to the container could use this flaw to modify /etc/passwd and escalate their privileges. |
| An insecure modification vulnerability in the /etc/passwd file was found in all versions of OpenShift ServiceMesh (maistra) before 1.0.8 in the openshift/istio-kialia-rhel7-operator-container. An attacker with access to the container could use this flaw to modify /etc/passwd and escalate their privileges. |
| A malicious container image can consume an unbounded amount of memory when being pulled to a container runtime host, such as Red Hat Enterprise Linux using podman, or OpenShift Container Platform. An attacker can use this flaw to trick a user, with privileges to pull container images, into crashing the process responsible for pulling the image. This flaw affects containers-image versions before 5.2.0. |
| A flaw was found in the KubeVirt main virt-handler versions before 0.26.0 regarding the access permissions of virt-handler. An attacker with access to create VMs could attach any secret within their namespace, allowing them to read the contents of that secret. |
| A flaw was found in the way the Ceph RGW Beast front-end handles unexpected disconnects. An authenticated attacker can abuse this flaw by making multiple disconnect attempts resulting in a permanent leak of a socket connection by radosgw. This flaw could lead to a denial of service condition by pile up of CLOSE_WAIT sockets, eventually leading to the exhaustion of available resources, preventing legitimate users from connecting to the system. |
| A path traversal flaw was found in the Ceph dashboard implemented in upstream versions v14.2.5, v14.2.6, v15.0.0 of Ceph storage and has been fixed in versions 14.2.7 and 15.1.0. An unauthenticated attacker could use this flaw to cause information disclosure on the host machine running the Ceph dashboard. |
| A flaw was found in keycloak in versions before 9.0.0. A logged exception in the HttpMethod class may leak the password given as parameter. The highest threat from this vulnerability is to data confidentiality. |
| It was found in all keycloak versions before 9.0.0 that links to external applications (Application Links) in the admin console are not validated properly and could allow Stored XSS attacks. An authed malicious user could create URLs to trick users in other realms, and possibly conduct further attacks. |
| A flaw was found in the all pki-core 10.x.x versions, where Token Processing Service (TPS) where it did not properly sanitize Profile IDs, enabling a Stored Cross-Site Scripting (XSS) vulnerability when the profile ID is printed. An attacker with sufficient permissions could trick an authenticated victim into executing a specially crafted Javascript code. |
| A flaw was found in all resteasy 3.x.x versions prior to 3.12.0.Final and all resteasy 4.x.x versions prior to 4.6.0.Final, where an improper input validation results in returning an illegal header that integrates into the server's response. This flaw may result in an injection, which leads to unexpected behavior when the HTTP response is constructed. |
| A flaw was found in all versions of Keycloak before 10.0.0, where the NodeJS adapter did not support the verify-token-audience. This flaw results in some users having access to sensitive information outside of their permissions. |
| A flaw was found in Spacewalk up to version 2.9 where it was vulnerable to XML internal entity attacks via the /rpc/api endpoint. An unauthenticated remote attacker could use this flaw to retrieve the content of certain files and trigger a denial of service, or in certain circumstances, execute arbitrary code on the Spacewalk server. |
| Moodle before version 3.7.2 is vulnerable to information exposure of service tokens for users enrolled in the same course. |
| In Moodle 3.8, messages required extra sanitizing before updating the conversation overview, to prevent the risk of stored cross-site scripting. |
| An improper authorization flaw was discovered in openstack-selinux's applied policy where it does not prevent a non-root user in a container from privilege escalation. A non-root attacker in one or more Red Hat OpenStack (RHOSP) containers could send messages to the dbus. With access to the dbus, the attacker could start or stop services, possibly causing a denial of service. Versions before openstack-selinux 0.8.24 are affected. |
| On Juniper Networks EX4300-MP Series, EX4600 Series and QFX5K Series deployed in a Virtual Chassis configuration, receipt of a stream of specific layer 2 frames can cause high CPU load, which could lead to traffic interruption. This issue does not occur when the device is deployed in Stand Alone configuration. The offending layer 2 frame packets can originate only from within the broadcast domain where the device is connected. This issue affects Juniper Networks Junos OS on EX4300-MP Series, EX4600 Series and QFX5K Series: 17.3 versions prior to 17.3R3-S9; 17.4 versions prior to 17.4R2-S11, 17.4R3-S2, 17.4R3-S3; 18.1 versions prior to 18.1R3-S11; 18.2 versions prior to 18.2R3-S5; 18.3 versions prior to 18.3R2-S4, 18.3R3-S3; 18.4 versions prior to 18.4R2-S5, 18.4R3-S4; 19.1 versions prior to 19.1R3-S2; 19.2 versions prior to 19.2R1-S5, 19.2R3; 19.3 versions prior to 19.3R2-S4, 19.3R3; 19.4 versions prior to 19.4R1-S3, 19.4R2-S1, 19.4R3; 20.1 versions prior to 20.1R1-S3, 20.1R2. |
| On Juniper Networks SRX Series and NFX Series, a local authenticated user with access to the shell may obtain the Web API service private key that is used to provide encrypted communication between the Juniper device and the authenticator services. Exploitation of this vulnerability may allow an attacker to decrypt the communications between the Juniper device and the authenticator service. This Web API service is used for authentication services such as the Juniper Identity Management Service, used to obtain user identity for Integrated User Firewall feature, or the integrated ClearPass authentication and enforcement feature. This issue affects Juniper Networks Junos OS on Networks SRX Series and NFX Series: 12.3X48 versions prior to 12.3X48-D105; 15.1X49 versions prior to 15.1X49-D190; 16.1 versions prior to 16.1R7-S8; 17.2 versions prior to 17.2R3-S4; 17.3 versions prior to 17.3R3-S8; 17.4 versions prior to 17.4R2-S11, 17.4R3; 18.1 versions prior to 18.1R3-S7; 18.2 versions prior to 18.2R3; 18.3 versions prior to 18.3R2-S4, 18.3R3; 18.4 versions prior to 18.4R1-S7, 18.4R2; 19.1 versions prior to 19.1R2; 19.2 versions prior to 19.2R1-S4, 19.2R2. |
| On Juniper Networks EX4300-MP Series, EX4600 Series and QFX5K Series deployed in (Ethernet VPN) EVPN-(Virtual Extensible LAN) VXLAN configuration, receipt of a stream of specific VXLAN encapsulated layer 2 frames can cause high CPU load, which could lead to network protocol operation issue and traffic interruption. This issue affects devices that are configured as a Layer 2 or Layer 3 gateway of an EVPN-VXLAN deployment. The offending layer 2 frames that cause the issue originate from a different access switch that get encapsulated within the same EVPN-VXLAN domain. This issue affects Juniper Networks Junos OS on EX4300-MP Series, EX4600 Series and QFX5K Series: 17.3 versions prior to 17.3R3-S9; 17.4 versions prior to 17.4R2-S11, 17.4R3-S2, 17.4R3-S3; 18.1 versions prior to 18.1R3-S11; 18.2 versions prior to 18.2R3-S5; 18.3 versions prior to 18.3R2-S4, 18.3R3-S3; 18.4 versions prior to 18.4R2-S5, 18.4R3-S4; 19.1 versions prior to 19.1R2-S2, 19.1R3-S2; 19.2 versions prior to 19.2R1-S5, 19.2R2-S1, 19.2R3; 19.3 versions prior to 19.3R2-S4, 19.3R3; 19.4 versions prior to 19.4R1-S3, 19.4R2-S1, 19.4R3; 20.1 versions prior to 20.1R1-S3, 20.1R2. |
| On Juniper Networks Junos OS devices, receipt of a malformed IPv6 packet may cause the system to crash and restart (vmcore). This issue can be trigged by a malformed IPv6 packet destined to the Routing Engine. An attacker can repeatedly send the offending packet resulting in an extended Denial of Service condition. Only IPv6 packets can trigger this issue. IPv4 packets cannot trigger this issue. This issue affects Juniper Networks Junos OS 18.4 versions prior to 18.4R2-S4, 18.4R3-S1; 19.1 versions prior to 19.1R2-S1, 19.1R3; 19.2 versions prior to 19.2R1-S5, 19.2R2; 19.3 versions prior to 19.3R2-S4, 19.3R3; 19.4 versions prior to 19.4R1-S3, 19.4R2. This issue does not affect Juniper Networks Junos OS prior to 18.4R1. |