| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: vhci: Prevent use-after-free by removing debugfs files early
Move the creation of debugfs files into a dedicated function, and ensure
they are explicitly removed during vhci_release(), before associated
data structures are freed.
Previously, debugfs files such as "force_suspend", "force_wakeup", and
others were created under hdev->debugfs but not removed in
vhci_release(). Since vhci_release() frees the backing vhci_data
structure, any access to these files after release would result in
use-after-free errors.
Although hdev->debugfs is later freed in hci_release_dev(), user can
access files after vhci_data is freed but before hdev->debugfs is
released. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix use-after-free when rescheduling brcmf_btcoex_info work
The brcmf_btcoex_detach() only shuts down the btcoex timer, if the
flag timer_on is false. However, the brcmf_btcoex_timerfunc(), which
runs as timer handler, sets timer_on to false. This creates critical
race conditions:
1.If brcmf_btcoex_detach() is called while brcmf_btcoex_timerfunc()
is executing, it may observe timer_on as false and skip the call to
timer_shutdown_sync().
2.The brcmf_btcoex_timerfunc() may then reschedule the brcmf_btcoex_info
worker after the cancel_work_sync() has been executed, resulting in
use-after-free bugs.
The use-after-free bugs occur in two distinct scenarios, depending on
the timing of when the brcmf_btcoex_info struct is freed relative to
the execution of its worker thread.
Scenario 1: Freed before the worker is scheduled
The brcmf_btcoex_info is deallocated before the worker is scheduled.
A race condition can occur when schedule_work(&bt_local->work) is
called after the target memory has been freed. The sequence of events
is detailed below:
CPU0 | CPU1
brcmf_btcoex_detach | brcmf_btcoex_timerfunc
| bt_local->timer_on = false;
if (cfg->btcoex->timer_on) |
... |
cancel_work_sync(); |
... |
kfree(cfg->btcoex); // FREE |
| schedule_work(&bt_local->work); // USE
Scenario 2: Freed after the worker is scheduled
The brcmf_btcoex_info is freed after the worker has been scheduled
but before or during its execution. In this case, statements within
the brcmf_btcoex_handler() — such as the container_of macro and
subsequent dereferences of the brcmf_btcoex_info object will cause
a use-after-free access. The following timeline illustrates this
scenario:
CPU0 | CPU1
brcmf_btcoex_detach | brcmf_btcoex_timerfunc
| bt_local->timer_on = false;
if (cfg->btcoex->timer_on) |
... |
cancel_work_sync(); |
... | schedule_work(); // Reschedule
|
kfree(cfg->btcoex); // FREE | brcmf_btcoex_handler() // Worker
/* | btci = container_of(....); // USE
The kfree() above could | ...
also occur at any point | btci-> // USE
during the worker's execution|
*/ |
To resolve the race conditions, drop the conditional check and call
timer_shutdown_sync() directly. It can deactivate the timer reliably,
regardless of its current state. Once stopped, the timer_on state is
then set to false. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: fix potential OF node use-after-free
The for_each_child_of_node() helper drops the reference it takes to each
node as it iterates over children and an explicit of_node_put() is only
needed when exiting the loop early.
Drop the recently introduced bogus additional reference count decrement
at each iteration that could potentially lead to a use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sysfs: Fix attempting to call device_add multiple times
device_add shall not be called multiple times as stated in its
documentation:
'Do not call this routine or device_register() more than once for
any device structure'
Syzkaller reports a bug as follows [1]:
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:33!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
[...]
Call Trace:
<TASK>
__list_add include/linux/list.h:69 [inline]
list_add_tail include/linux/list.h:102 [inline]
kobj_kset_join lib/kobject.c:164 [inline]
kobject_add_internal+0x18f/0x8f0 lib/kobject.c:214
kobject_add_varg lib/kobject.c:358 [inline]
kobject_add+0x150/0x1c0 lib/kobject.c:410
device_add+0x368/0x1e90 drivers/base/core.c:3452
hci_conn_add_sysfs+0x9b/0x1b0 net/bluetooth/hci_sysfs.c:53
hci_le_cis_estabilished_evt+0x57c/0xae0 net/bluetooth/hci_event.c:6799
hci_le_meta_evt+0x2b8/0x510 net/bluetooth/hci_event.c:7110
hci_event_func net/bluetooth/hci_event.c:7440 [inline]
hci_event_packet+0x63d/0xfd0 net/bluetooth/hci_event.c:7495
hci_rx_work+0xae7/0x1230 net/bluetooth/hci_core.c:4007
process_one_work+0x991/0x1610 kernel/workqueue.c:2289
worker_thread+0x665/0x1080 kernel/workqueue.c:2436
kthread+0x2e4/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Remove improper idxd_free
The call to idxd_free() introduces a duplicate put_device() leading to a
reference count underflow:
refcount_t: underflow; use-after-free.
WARNING: CPU: 15 PID: 4428 at lib/refcount.c:28 refcount_warn_saturate+0xbe/0x110
...
Call Trace:
<TASK>
idxd_remove+0xe4/0x120 [idxd]
pci_device_remove+0x3f/0xb0
device_release_driver_internal+0x197/0x200
driver_detach+0x48/0x90
bus_remove_driver+0x74/0xf0
pci_unregister_driver+0x2e/0xb0
idxd_exit_module+0x34/0x7a0 [idxd]
__do_sys_delete_module.constprop.0+0x183/0x280
do_syscall_64+0x54/0xd70
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The idxd_unregister_devices() which is invoked at the very beginning of
idxd_remove(), already takes care of the necessary put_device() through the
following call path:
idxd_unregister_devices() -> device_unregister() -> put_device()
In addition, when CONFIG_DEBUG_KOBJECT_RELEASE is enabled, put_device() may
trigger asynchronous cleanup via schedule_delayed_work(). If idxd_free() is
called immediately after, it can result in a use-after-free.
Remove the improper idxd_free() to avoid both the refcount underflow and
potential memory corruption during module unload. |
| In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Prevent recovery work from being queued during device removal
Use disable_work_sync() instead of cancel_work_sync() in ivpu_dev_fini()
to ensure that no new recovery work items can be queued after device
removal has started. Previously, recovery work could be scheduled even
after canceling existing work, potentially leading to use-after-free
bugs if recovery accessed freed resources.
Rename ivpu_pm_cancel_recovery() to ivpu_pm_disable_recovery() to better
reflect its new behavior. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: prevent use-after-free by freeing the cfile later
In smb2_compound_op we have a possible use-after-free
which can cause hard to debug problems later on.
This was revealed during stress testing with KASAN enabled
kernel. Fixing it by moving the cfile free call to
a few lines below, after the usage. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: fail SCO/ISO via hci_conn_failed if ACL gone early
Not calling hci_(dis)connect_cfm before deleting conn referred to by a
socket generally results to use-after-free.
When cleaning up SCO connections when the parent ACL is deleted too
early, use hci_conn_failed to do the connection cleanup properly.
We also need to clean up ISO connections in a similar situation when
connecting has started but LE Create CIS is not yet sent, so do it too
here. |
| In aocc_read of aoc_channel_dev.c, there is a possible double free due to improper locking. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. |
| In bigo_map of bigo_iommu.c, there is a possible information disclosure due to a use after free. This could lead to local escalation of privilege in the OS Kernel level with System execution privileges needed. User interaction is not needed for exploitation. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: seqiv - Handle EBUSY correctly
As it is seqiv only handles the special return value of EINPROGERSS,
which means that in all other cases it will free data related to the
request.
However, as the caller of seqiv may specify MAY_BACKLOG, we also need
to expect EBUSY and treat it in the same way. Otherwise backlogged
requests will trigger a use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix use-after-free
We've already freed the assoc_data at this point, so need
to use another copy of the AP (MLD) address instead. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panfrost: Fix GEM handle creation ref-counting
panfrost_gem_create_with_handle() previously returned a BO but with the
only reference being from the handle, which user space could in theory
guess and release, causing a use-after-free. Additionally if the call to
panfrost_gem_mapping_get() in panfrost_ioctl_create_bo() failed then
a(nother) reference on the BO was dropped.
The _create_with_handle() is a problematic pattern, so ditch it and
instead create the handle in panfrost_ioctl_create_bo(). If the call to
panfrost_gem_mapping_get() fails then this means that user space has
indeed gone behind our back and freed the handle. In which case just
return an error code. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix racy issue under cocurrent smb2 tree disconnect
There is UAF issue under cocurrent smb2 tree disconnect.
This patch introduce TREE_CONN_EXPIRE flags for tcon to avoid cocurrent
access. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Fix use-after-free in pci_bus_release_domain_nr()
Commit c14f7ccc9f5d ("PCI: Assign PCI domain IDs by ida_alloc()")
introduced a use-after-free bug in the bus removal cleanup. The issue was
found with kfence:
[ 19.293351] BUG: KFENCE: use-after-free read in pci_bus_release_domain_nr+0x10/0x70
[ 19.302817] Use-after-free read at 0x000000007f3b80eb (in kfence-#115):
[ 19.309677] pci_bus_release_domain_nr+0x10/0x70
[ 19.309691] dw_pcie_host_deinit+0x28/0x78
[ 19.309702] tegra_pcie_deinit_controller+0x1c/0x38 [pcie_tegra194]
[ 19.309734] tegra_pcie_dw_probe+0x648/0xb28 [pcie_tegra194]
[ 19.309752] platform_probe+0x90/0xd8
...
[ 19.311457] kfence-#115: 0x00000000063a155a-0x00000000ba698da8, size=1072, cache=kmalloc-2k
[ 19.311469] allocated by task 96 on cpu 10 at 19.279323s:
[ 19.311562] __kmem_cache_alloc_node+0x260/0x278
[ 19.311571] kmalloc_trace+0x24/0x30
[ 19.311580] pci_alloc_bus+0x24/0xa0
[ 19.311590] pci_register_host_bridge+0x48/0x4b8
[ 19.311601] pci_scan_root_bus_bridge+0xc0/0xe8
[ 19.311613] pci_host_probe+0x18/0xc0
[ 19.311623] dw_pcie_host_init+0x2c0/0x568
[ 19.311630] tegra_pcie_dw_probe+0x610/0xb28 [pcie_tegra194]
[ 19.311647] platform_probe+0x90/0xd8
...
[ 19.311782] freed by task 96 on cpu 10 at 19.285833s:
[ 19.311799] release_pcibus_dev+0x30/0x40
[ 19.311808] device_release+0x30/0x90
[ 19.311814] kobject_put+0xa8/0x120
[ 19.311832] device_unregister+0x20/0x30
[ 19.311839] pci_remove_bus+0x78/0x88
[ 19.311850] pci_remove_root_bus+0x5c/0x98
[ 19.311860] dw_pcie_host_deinit+0x28/0x78
[ 19.311866] tegra_pcie_deinit_controller+0x1c/0x38 [pcie_tegra194]
[ 19.311883] tegra_pcie_dw_probe+0x648/0xb28 [pcie_tegra194]
[ 19.311900] platform_probe+0x90/0xd8
...
[ 19.313579] CPU: 10 PID: 96 Comm: kworker/u24:2 Not tainted 6.2.0 #4
[ 19.320171] Hardware name: /, BIOS 1.0-d7fb19b 08/10/2022
[ 19.325852] Workqueue: events_unbound deferred_probe_work_func
The stack trace is a bit misleading as dw_pcie_host_deinit() doesn't
directly call pci_bus_release_domain_nr(). The issue turns out to be in
pci_remove_root_bus() which first calls pci_remove_bus() which frees the
struct pci_bus when its struct device is released. Then
pci_bus_release_domain_nr() is called and accesses the freed struct
pci_bus. Reordering these fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: vme_user: Fix possible UAF in tsi148_dma_list_add
Smatch report warning as follows:
drivers/staging/vme_user/vme_tsi148.c:1757 tsi148_dma_list_add() warn:
'&entry->list' not removed from list
In tsi148_dma_list_add(), the error path "goto err_dma" will not
remove entry->list from list->entries, but entry will be freed,
then list traversal may cause UAF.
Fix by removeing it from list->entries before free(). |
| A flaw was found in the key export functionality of libssh. The issue occurs in the internal function responsible for converting cryptographic keys into serialized formats. During error handling, a memory structure is freed but not cleared, leading to a potential double free issue if an additional failure occurs later in the function. This condition may result in heap corruption or application instability in low-memory scenarios, posing a risk to system reliability where key export operations are performed. |
| ImageMagick is free and open-source software used for editing and manipulating digital images. Prior to 7.1.2-9 and 6.9.13-34, there is a vulnerability in ImageMagick’s Magick++ layer that manifests when Options::fontFamily is invoked with an empty string. Clearing a font family calls RelinquishMagickMemory on _drawInfo->font, freeing the font string but leaving _drawInfo->font pointing to freed memory while _drawInfo->family is set to that (now-invalid) pointer. Any later cleanup or reuse of _drawInfo->font re-frees or dereferences dangling memory. DestroyDrawInfo and other setters (Options::font, Image::font) assume _drawInfo->font remains valid, so destruction or subsequent updates trigger crashes or heap corruption. This vulnerability is fixed in 7.1.2-9 and 6.9.13-34. |
| An issue was discovered in Foxit PDF and Editor for Windows before 13.2 and 2025 before 2025.2. A crafted PDF containing JavaScript that calls closeDoc() while internal objects are still in use can cause premature release of these objects. This use-after-free vulnerability may lead to memory corruption, potentially resulting in information disclosure when the PDF is opened. |
| An issue was discovered in Foxit PDF and Editor for Windows and macOS before 13.2 and 2025 before 2025.2. A crafted PDF can contain JavaScript that attaches an OnBlur action on a form field that destroys an annotation. During user right-click interaction, the program's internal focus change handling prematurely releases the annotation object, resulting in a use-after-free vulnerability that may cause memory corruption or application crashes. |