CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
accel/habanalabs: fix mem leak in capture user mappings
This commit fixes a memory leak caused when clearing the user_mappings
info when a new context is opened immediately after user_mapping is
captured and a hard reset is performed. |
In the Linux kernel, the following vulnerability has been resolved:
block: be a bit more careful in checking for NULL bdev while polling
Wei reports a crash with an application using polled IO:
PGD 14265e067 P4D 14265e067 PUD 47ec50067 PMD 0
Oops: 0000 [#1] SMP
CPU: 0 PID: 21915 Comm: iocore_0 Kdump: loaded Tainted: G S 5.12.0-0_fbk12_clang_7346_g1bb6f2e7058f #1
Hardware name: Wiwynn Delta Lake MP T8/Delta Lake-Class2, BIOS Y3DLM08 04/10/2022
RIP: 0010:bio_poll+0x25/0x200
Code: 0f 1f 44 00 00 0f 1f 44 00 00 55 41 57 41 56 41 55 41 54 53 48 83 ec 28 65 48 8b 04 25 28 00 00 00 48 89 44 24 20 48 8b 47 08 <48> 8b 80 70 02 00 00 4c 8b 70 50 8b 6f 34 31 db 83 fd ff 75 25 65
RSP: 0018:ffffc90005fafdf8 EFLAGS: 00010292
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 74b43cd65dd66600
RDX: 0000000000000003 RSI: ffffc90005fafe78 RDI: ffff8884b614e140
RBP: ffff88849964df78 R08: 0000000000000000 R09: 0000000000000008
R10: 0000000000000000 R11: 0000000000000000 R12: ffff88849964df00
R13: ffffc90005fafe78 R14: ffff888137d3c378 R15: 0000000000000001
FS: 00007fd195000640(0000) GS:ffff88903f400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000270 CR3: 0000000466121001 CR4: 00000000007706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
iocb_bio_iopoll+0x1d/0x30
io_do_iopoll+0xac/0x250
__se_sys_io_uring_enter+0x3c5/0x5a0
? __x64_sys_write+0x89/0xd0
do_syscall_64+0x2d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x94f225d
Code: 24 cc 00 00 00 41 8b 84 24 d0 00 00 00 c1 e0 04 83 e0 10 41 09 c2 8b 33 8b 53 04 4c 8b 43 18 4c 63 4b 0c b8 aa 01 00 00 0f 05 <85> c0 0f 88 85 00 00 00 29 03 45 84 f6 0f 84 88 00 00 00 41 f6 c7
RSP: 002b:00007fd194ffcd88 EFLAGS: 00000202 ORIG_RAX: 00000000000001aa
RAX: ffffffffffffffda RBX: 00007fd194ffcdc0 RCX: 00000000094f225d
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000007
RBP: 00007fd194ffcdb0 R08: 0000000000000000 R09: 0000000000000008
R10: 0000000000000001 R11: 0000000000000202 R12: 00007fd269d68030
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000000
which is due to bio->bi_bdev being NULL. This can happen if we have two
tasks doing polled IO, and task B ends up completing IO from task A if
they are sharing a poll queue. If task B completes the IO and puts the
bio into our cache, then it can allocate that bio again before task A
is done polling for it. As that would necessitate a preempt between the
two tasks, it's enough to just be a bit more careful in checking for
whether or not bio->bi_bdev is NULL. |
In the Linux kernel, the following vulnerability has been resolved:
ip6mr: Fix skb_under_panic in ip6mr_cache_report()
skbuff: skb_under_panic: text:ffffffff88771f69 len:56 put:-4
head:ffff88805f86a800 data:ffff887f5f86a850 tail:0x88 end:0x2c0 dev:pim6reg
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:192!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 2 PID: 22968 Comm: kworker/2:11 Not tainted 6.5.0-rc3-00044-g0a8db05b571a #236
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Workqueue: ipv6_addrconf addrconf_dad_work
RIP: 0010:skb_panic+0x152/0x1d0
Call Trace:
<TASK>
skb_push+0xc4/0xe0
ip6mr_cache_report+0xd69/0x19b0
reg_vif_xmit+0x406/0x690
dev_hard_start_xmit+0x17e/0x6e0
__dev_queue_xmit+0x2d6a/0x3d20
vlan_dev_hard_start_xmit+0x3ab/0x5c0
dev_hard_start_xmit+0x17e/0x6e0
__dev_queue_xmit+0x2d6a/0x3d20
neigh_connected_output+0x3ed/0x570
ip6_finish_output2+0x5b5/0x1950
ip6_finish_output+0x693/0x11c0
ip6_output+0x24b/0x880
NF_HOOK.constprop.0+0xfd/0x530
ndisc_send_skb+0x9db/0x1400
ndisc_send_rs+0x12a/0x6c0
addrconf_dad_completed+0x3c9/0xea0
addrconf_dad_work+0x849/0x1420
process_one_work+0xa22/0x16e0
worker_thread+0x679/0x10c0
ret_from_fork+0x28/0x60
ret_from_fork_asm+0x11/0x20
When setup a vlan device on dev pim6reg, DAD ns packet may sent on reg_vif_xmit().
reg_vif_xmit()
ip6mr_cache_report()
skb_push(skb, -skb_network_offset(pkt));//skb_network_offset(pkt) is 4
And skb_push declared as:
void *skb_push(struct sk_buff *skb, unsigned int len);
skb->data -= len;
//0xffff88805f86a84c - 0xfffffffc = 0xffff887f5f86a850
skb->data is set to 0xffff887f5f86a850, which is invalid mem addr, lead to skb_push() fails. |
In the Linux kernel, the following vulnerability has been resolved:
regulator: da9063: better fix null deref with partial DT
Two versions of the original patch were sent but V1 was merged instead
of V2 due to a mistake.
So update to V2.
The advantage of V2 is that it completely avoids dereferencing the pointer,
even just to take the address, which may fix problems with some compilers.
Both versions work on my gcc 9.4 but use the safer one. |
In the Linux kernel, the following vulnerability has been resolved:
PCI: Fix use-after-free in pci_bus_release_domain_nr()
Commit c14f7ccc9f5d ("PCI: Assign PCI domain IDs by ida_alloc()")
introduced a use-after-free bug in the bus removal cleanup. The issue was
found with kfence:
[ 19.293351] BUG: KFENCE: use-after-free read in pci_bus_release_domain_nr+0x10/0x70
[ 19.302817] Use-after-free read at 0x000000007f3b80eb (in kfence-#115):
[ 19.309677] pci_bus_release_domain_nr+0x10/0x70
[ 19.309691] dw_pcie_host_deinit+0x28/0x78
[ 19.309702] tegra_pcie_deinit_controller+0x1c/0x38 [pcie_tegra194]
[ 19.309734] tegra_pcie_dw_probe+0x648/0xb28 [pcie_tegra194]
[ 19.309752] platform_probe+0x90/0xd8
...
[ 19.311457] kfence-#115: 0x00000000063a155a-0x00000000ba698da8, size=1072, cache=kmalloc-2k
[ 19.311469] allocated by task 96 on cpu 10 at 19.279323s:
[ 19.311562] __kmem_cache_alloc_node+0x260/0x278
[ 19.311571] kmalloc_trace+0x24/0x30
[ 19.311580] pci_alloc_bus+0x24/0xa0
[ 19.311590] pci_register_host_bridge+0x48/0x4b8
[ 19.311601] pci_scan_root_bus_bridge+0xc0/0xe8
[ 19.311613] pci_host_probe+0x18/0xc0
[ 19.311623] dw_pcie_host_init+0x2c0/0x568
[ 19.311630] tegra_pcie_dw_probe+0x610/0xb28 [pcie_tegra194]
[ 19.311647] platform_probe+0x90/0xd8
...
[ 19.311782] freed by task 96 on cpu 10 at 19.285833s:
[ 19.311799] release_pcibus_dev+0x30/0x40
[ 19.311808] device_release+0x30/0x90
[ 19.311814] kobject_put+0xa8/0x120
[ 19.311832] device_unregister+0x20/0x30
[ 19.311839] pci_remove_bus+0x78/0x88
[ 19.311850] pci_remove_root_bus+0x5c/0x98
[ 19.311860] dw_pcie_host_deinit+0x28/0x78
[ 19.311866] tegra_pcie_deinit_controller+0x1c/0x38 [pcie_tegra194]
[ 19.311883] tegra_pcie_dw_probe+0x648/0xb28 [pcie_tegra194]
[ 19.311900] platform_probe+0x90/0xd8
...
[ 19.313579] CPU: 10 PID: 96 Comm: kworker/u24:2 Not tainted 6.2.0 #4
[ 19.320171] Hardware name: /, BIOS 1.0-d7fb19b 08/10/2022
[ 19.325852] Workqueue: events_unbound deferred_probe_work_func
The stack trace is a bit misleading as dw_pcie_host_deinit() doesn't
directly call pci_bus_release_domain_nr(). The issue turns out to be in
pci_remove_root_bus() which first calls pci_remove_bus() which frees the
struct pci_bus when its struct device is released. Then
pci_bus_release_domain_nr() is called and accesses the freed struct
pci_bus. Reordering these fixes the issue. |
In the Linux kernel, the following vulnerability has been resolved:
bus: fsl-mc: don't assume child devices are all fsl-mc devices
Changes in VFIO caused a pseudo-device to be created as child of
fsl-mc devices causing a crash [1] when trying to bind a fsl-mc
device to VFIO. Fix this by checking the device type when enumerating
fsl-mc child devices.
[1]
Modules linked in:
Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
CPU: 6 PID: 1289 Comm: sh Not tainted 6.2.0-rc5-00047-g7c46948a6e9c #2
Hardware name: NXP Layerscape LX2160ARDB (DT)
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : mc_send_command+0x24/0x1f0
lr : dprc_get_obj_region+0xfc/0x1c0
sp : ffff80000a88b900
x29: ffff80000a88b900 x28: ffff48a9429e1400 x27: 00000000000002b2
x26: ffff48a9429e1718 x25: 0000000000000000 x24: 0000000000000000
x23: ffffd59331ba3918 x22: ffffd59331ba3000 x21: 0000000000000000
x20: ffff80000a88b9b8 x19: 0000000000000000 x18: 0000000000000001
x17: 7270642f636d2d6c x16: 73662e3030303030 x15: ffffffffffffffff
x14: ffffd59330f1d668 x13: ffff48a8727dc389 x12: ffff48a8727dc386
x11: 0000000000000002 x10: 00008ceaf02f35d4 x9 : 0000000000000012
x8 : 0000000000000000 x7 : 0000000000000006 x6 : ffff80000a88bab0
x5 : 0000000000000000 x4 : 0000000000000000 x3 : ffff80000a88b9e8
x2 : ffff80000a88b9e8 x1 : 0000000000000000 x0 : ffff48a945142b80
Call trace:
mc_send_command+0x24/0x1f0
dprc_get_obj_region+0xfc/0x1c0
fsl_mc_device_add+0x340/0x590
fsl_mc_obj_device_add+0xd0/0xf8
dprc_scan_objects+0x1c4/0x340
dprc_scan_container+0x38/0x60
vfio_fsl_mc_probe+0x9c/0xf8
fsl_mc_driver_probe+0x24/0x70
really_probe+0xbc/0x2a8
__driver_probe_device+0x78/0xe0
device_driver_attach+0x30/0x68
bind_store+0xa8/0x130
drv_attr_store+0x24/0x38
sysfs_kf_write+0x44/0x60
kernfs_fop_write_iter+0x128/0x1b8
vfs_write+0x334/0x448
ksys_write+0x68/0xf0
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x44/0x108
el0_svc_common.constprop.1+0x94/0xf8
do_el0_svc+0x38/0xb0
el0_svc+0x20/0x50
el0t_64_sync_handler+0x98/0xc0
el0t_64_sync+0x174/0x178
Code: aa0103f4 a9025bf5 d5384100 b9400801 (79401260)
---[ end trace 0000000000000000 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: mm: Add p?d_leaf() definitions
When I do LTP test, LTP test case ksm06 caused panic at
break_ksm_pmd_entry
-> pmd_leaf (Huge page table but False)
-> pte_present (panic)
The reason is pmd_leaf() is not defined, So like commit 501b81046701
("mips: mm: add p?d_leaf() definitions") add p?d_leaf() definition for
LoongArch. |
In the Linux kernel, the following vulnerability has been resolved:
NFSv4.2: Rework scratch handling for READ_PLUS (again)
I found that the read code might send multiple requests using the same
nfs_pgio_header, but nfs4_proc_read_setup() is only called once. This is
how we ended up occasionally double-freeing the scratch buffer, but also
means we set a NULL pointer but non-zero length to the xdr scratch
buffer. This results in an oops the first time decoding needs to copy
something to scratch, which frequently happens when decoding READ_PLUS
hole segments.
I fix this by moving scratch handling into the pageio read code. I
provide a function to allocate scratch space for decoding read replies,
and free the scratch buffer when the nfs_pgio_header is freed. |
In the Linux kernel, the following vulnerability has been resolved:
USB: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once. |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix racy issue under cocurrent smb2 tree disconnect
There is UAF issue under cocurrent smb2 tree disconnect.
This patch introduce TREE_CONN_EXPIRE flags for tcon to avoid cocurrent
access. |
In the Linux kernel, the following vulnerability has been resolved:
md/raid10: check slab-out-of-bounds in md_bitmap_get_counter
If we write a large number to md/bitmap_set_bits, md_bitmap_checkpage()
will return -EINVAL because 'page >= bitmap->pages', but the return value
was not checked immediately in md_bitmap_get_counter() in order to set
*blocks value and slab-out-of-bounds occurs.
Move check of 'page >= bitmap->pages' to md_bitmap_get_counter() and
return directly if true. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: u_serial: Add null pointer check in gserial_suspend
Consider a case where gserial_disconnect has already cleared
gser->ioport. And if gserial_suspend gets called afterwards,
it will lead to accessing of gser->ioport and thus causing
null pointer dereference.
Avoid this by adding a null pointer check. Added a static
spinlock to prevent gser->ioport from becoming null after
the newly added null pointer check. |
In the Linux kernel, the following vulnerability has been resolved:
staging: pi433: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. This requires saving off the root directory dentry to make
creation of individual device subdirectories easier. |
In the Linux kernel, the following vulnerability has been resolved:
skbuff: skb_segment, Call zero copy functions before using skbuff frags
Commit bf5c25d60861 ("skbuff: in skb_segment, call zerocopy functions
once per nskb") added the call to zero copy functions in skb_segment().
The change introduced a bug in skb_segment() because skb_orphan_frags()
may possibly change the number of fragments or allocate new fragments
altogether leaving nrfrags and frag to point to the old values. This can
cause a panic with stacktrace like the one below.
[ 193.894380] BUG: kernel NULL pointer dereference, address: 00000000000000bc
[ 193.895273] CPU: 13 PID: 18164 Comm: vh-net-17428 Kdump: loaded Tainted: G O 5.15.123+ #26
[ 193.903919] RIP: 0010:skb_segment+0xb0e/0x12f0
[ 194.021892] Call Trace:
[ 194.027422] <TASK>
[ 194.072861] tcp_gso_segment+0x107/0x540
[ 194.082031] inet_gso_segment+0x15c/0x3d0
[ 194.090783] skb_mac_gso_segment+0x9f/0x110
[ 194.095016] __skb_gso_segment+0xc1/0x190
[ 194.103131] netem_enqueue+0x290/0xb10 [sch_netem]
[ 194.107071] dev_qdisc_enqueue+0x16/0x70
[ 194.110884] __dev_queue_xmit+0x63b/0xb30
[ 194.121670] bond_start_xmit+0x159/0x380 [bonding]
[ 194.128506] dev_hard_start_xmit+0xc3/0x1e0
[ 194.131787] __dev_queue_xmit+0x8a0/0xb30
[ 194.138225] macvlan_start_xmit+0x4f/0x100 [macvlan]
[ 194.141477] dev_hard_start_xmit+0xc3/0x1e0
[ 194.144622] sch_direct_xmit+0xe3/0x280
[ 194.147748] __dev_queue_xmit+0x54a/0xb30
[ 194.154131] tap_get_user+0x2a8/0x9c0 [tap]
[ 194.157358] tap_sendmsg+0x52/0x8e0 [tap]
[ 194.167049] handle_tx_zerocopy+0x14e/0x4c0 [vhost_net]
[ 194.173631] handle_tx+0xcd/0xe0 [vhost_net]
[ 194.176959] vhost_worker+0x76/0xb0 [vhost]
[ 194.183667] kthread+0x118/0x140
[ 194.190358] ret_from_fork+0x1f/0x30
[ 194.193670] </TASK>
In this case calling skb_orphan_frags() updated nr_frags leaving nrfrags
local variable in skb_segment() stale. This resulted in the code hitting
i >= nrfrags prematurely and trying to move to next frag_skb using
list_skb pointer, which was NULL, and caused kernel panic. Move the call
to zero copy functions before using frags and nr_frags. |
In the Linux kernel, the following vulnerability has been resolved:
accel/habanalabs: postpone mem_mgr IDR destruction to hpriv_release()
The memory manager IDR is currently destroyed when user releases the
file descriptor.
However, at this point the user context might be still held, and memory
buffers might be still in use.
Later on, calls to release those buffers will fail due to not finding
their handles in the IDR, leading to a memory leak.
To avoid this leak, split the IDR destruction from the memory manager
fini, and postpone it to hpriv_release() when there is no user context
and no buffers are used. |
In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: check null pointer before accessing when swapping
Add a check to avoid null pointer dereference as below:
[ 90.002283] general protection fault, probably for non-canonical
address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN NOPTI
[ 90.002292] KASAN: null-ptr-deref in range
[0x0000000000000000-0x0000000000000007]
[ 90.002346] ? exc_general_protection+0x159/0x240
[ 90.002352] ? asm_exc_general_protection+0x26/0x30
[ 90.002357] ? ttm_bo_evict_swapout_allowable+0x322/0x5e0 [ttm]
[ 90.002365] ? ttm_bo_evict_swapout_allowable+0x42e/0x5e0 [ttm]
[ 90.002373] ttm_bo_swapout+0x134/0x7f0 [ttm]
[ 90.002383] ? __pfx_ttm_bo_swapout+0x10/0x10 [ttm]
[ 90.002391] ? lock_acquire+0x44d/0x4f0
[ 90.002398] ? ttm_device_swapout+0xa5/0x260 [ttm]
[ 90.002412] ? lock_acquired+0x355/0xa00
[ 90.002416] ? do_raw_spin_trylock+0xb6/0x190
[ 90.002421] ? __pfx_lock_acquired+0x10/0x10
[ 90.002426] ? ttm_global_swapout+0x25/0x210 [ttm]
[ 90.002442] ttm_device_swapout+0x198/0x260 [ttm]
[ 90.002456] ? __pfx_ttm_device_swapout+0x10/0x10 [ttm]
[ 90.002472] ttm_global_swapout+0x75/0x210 [ttm]
[ 90.002486] ttm_tt_populate+0x187/0x3f0 [ttm]
[ 90.002501] ttm_bo_handle_move_mem+0x437/0x590 [ttm]
[ 90.002517] ttm_bo_validate+0x275/0x430 [ttm]
[ 90.002530] ? __pfx_ttm_bo_validate+0x10/0x10 [ttm]
[ 90.002544] ? kasan_save_stack+0x33/0x60
[ 90.002550] ? kasan_set_track+0x25/0x30
[ 90.002554] ? __kasan_kmalloc+0x8f/0xa0
[ 90.002558] ? amdgpu_gtt_mgr_new+0x81/0x420 [amdgpu]
[ 90.003023] ? ttm_resource_alloc+0xf6/0x220 [ttm]
[ 90.003038] amdgpu_bo_pin_restricted+0x2dd/0x8b0 [amdgpu]
[ 90.003210] ? __x64_sys_ioctl+0x131/0x1a0
[ 90.003210] ? do_syscall_64+0x60/0x90 |
In the Linux kernel, the following vulnerability has been resolved:
drm/sched: Check scheduler work queue before calling timeout handling
During an IGT GPU reset test we see again oops despite of
commit 0c8c901aaaebc9 (drm/sched: Check scheduler ready before calling
timeout handling).
It uses ready condition whether to call drm_sched_fault which unwind
the TDR leads to GPU reset.
However it looks the ready condition is overloaded with other meanings,
for example, for the following stack is related GPU reset :
0 gfx_v9_0_cp_gfx_start
1 gfx_v9_0_cp_gfx_resume
2 gfx_v9_0_cp_resume
3 gfx_v9_0_hw_init
4 gfx_v9_0_resume
5 amdgpu_device_ip_resume_phase2
does the following:
/* start the ring */
gfx_v9_0_cp_gfx_start(adev);
ring->sched.ready = true;
The same approach is for other ASICs as well :
gfx_v8_0_cp_gfx_resume
gfx_v10_0_kiq_resume, etc...
As a result, our GPU reset test causes GPU fault which calls unconditionally gfx_v9_0_fault
and then drm_sched_fault. However now it depends on whether the interrupt service routine
drm_sched_fault is executed after gfx_v9_0_cp_gfx_start is completed which sets the ready
field of the scheduler to true even for uninitialized schedulers and causes oops vs
no fault or when ISR drm_sched_fault is completed prior gfx_v9_0_cp_gfx_start and
NULL pointer dereference does not occur.
Use the field timeout_wq to prevent oops for uninitialized schedulers.
The field could be initialized by the work queue of resetting the domain.
v1: Corrections to commit message (Luben) |
In the Linux kernel, the following vulnerability has been resolved:
accel/qaic: Fix slicing memory leak
The temporary buffer storing slicing configuration data from user is only
freed on error. This is a memory leak. Free the buffer unconditionally. |
In the Linux kernel, the following vulnerability has been resolved:
media: ov2740: Fix memleak in ov2740_init_controls()
There is a kmemleak when testing the media/i2c/ov2740.c with bpf mock
device:
unreferenced object 0xffff8881090e19e0 (size 16):
comm "51-i2c-ov2740", pid 278, jiffies 4294781584 (age 23.613s)
hex dump (first 16 bytes):
00 f3 7c 0b 81 88 ff ff 80 75 6a 09 81 88 ff ff ..|......uj.....
backtrace:
[<000000004e9fad8f>] __kmalloc_node+0x44/0x1b0
[<0000000039c802f4>] kvmalloc_node+0x34/0x180
[<000000009b8b5c63>] v4l2_ctrl_handler_init_class+0x11d/0x180
[videodev]
[<0000000038644056>] ov2740_probe+0x37d/0x84f [ov2740]
[<0000000092489f59>] i2c_device_probe+0x28d/0x680
[<000000001038babe>] really_probe+0x17c/0x3f0
[<0000000098c7af1c>] __driver_probe_device+0xe3/0x170
[<00000000e1b3dc24>] device_driver_attach+0x34/0x80
[<000000005a04a34d>] bind_store+0x10b/0x1a0
[<00000000ce25d4f2>] drv_attr_store+0x49/0x70
[<000000007d9f4e9a>] sysfs_kf_write+0x8c/0xb0
[<00000000be6cff0f>] kernfs_fop_write_iter+0x216/0x2e0
[<0000000031ddb40a>] vfs_write+0x658/0x810
[<0000000041beecdd>] ksys_write+0xd6/0x1b0
[<0000000023755840>] do_syscall_64+0x38/0x90
[<00000000b2cc2da2>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
ov2740_init_controls() won't clean all the allocated resources in fail
path, which may causes the memleaks. Add v4l2_ctrl_handler_free() to
prevent memleak. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock when aborting transaction during relocation with scrub
Before relocating a block group we pause scrub, then do the relocation and
then unpause scrub. The relocation process requires starting and committing
a transaction, and if we have a failure in the critical section of the
transaction commit path (transaction state >= TRANS_STATE_COMMIT_START),
we will deadlock if there is a paused scrub.
That results in stack traces like the following:
[42.479] BTRFS info (device sdc): relocating block group 53876686848 flags metadata|raid6
[42.936] BTRFS warning (device sdc): Skipping commit of aborted transaction.
[42.936] ------------[ cut here ]------------
[42.936] BTRFS: Transaction aborted (error -28)
[42.936] WARNING: CPU: 11 PID: 346822 at fs/btrfs/transaction.c:1977 btrfs_commit_transaction+0xcc8/0xeb0 [btrfs]
[42.936] Modules linked in: dm_flakey dm_mod loop btrfs (...)
[42.936] CPU: 11 PID: 346822 Comm: btrfs Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1
[42.936] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[42.936] RIP: 0010:btrfs_commit_transaction+0xcc8/0xeb0 [btrfs]
[42.936] Code: ff ff 45 8b (...)
[42.936] RSP: 0018:ffffb58649633b48 EFLAGS: 00010282
[42.936] RAX: 0000000000000000 RBX: ffff8be6ef4d5bd8 RCX: 0000000000000000
[42.936] RDX: 0000000000000002 RSI: ffffffffb35e7782 RDI: 00000000ffffffff
[42.936] RBP: ffff8be6ef4d5c98 R08: 0000000000000000 R09: ffffb586496339e8
[42.936] R10: 0000000000000001 R11: 0000000000000001 R12: ffff8be6d38c7c00
[42.936] R13: 00000000ffffffe4 R14: ffff8be6c268c000 R15: ffff8be6ef4d5cf0
[42.936] FS: 00007f381a82b340(0000) GS:ffff8beddfcc0000(0000) knlGS:0000000000000000
[42.936] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[42.936] CR2: 00007f1e35fb7638 CR3: 0000000117680006 CR4: 0000000000370ee0
[42.936] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[42.936] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[42.936] Call Trace:
[42.936] <TASK>
[42.936] ? start_transaction+0xcb/0x610 [btrfs]
[42.936] prepare_to_relocate+0x111/0x1a0 [btrfs]
[42.936] relocate_block_group+0x57/0x5d0 [btrfs]
[42.936] ? btrfs_wait_nocow_writers+0x25/0xb0 [btrfs]
[42.936] btrfs_relocate_block_group+0x248/0x3c0 [btrfs]
[42.936] ? __pfx_autoremove_wake_function+0x10/0x10
[42.936] btrfs_relocate_chunk+0x3b/0x150 [btrfs]
[42.936] btrfs_balance+0x8ff/0x11d0 [btrfs]
[42.936] ? __kmem_cache_alloc_node+0x14a/0x410
[42.936] btrfs_ioctl+0x2334/0x32c0 [btrfs]
[42.937] ? mod_objcg_state+0xd2/0x360
[42.937] ? refill_obj_stock+0xb0/0x160
[42.937] ? seq_release+0x25/0x30
[42.937] ? __rseq_handle_notify_resume+0x3b5/0x4b0
[42.937] ? percpu_counter_add_batch+0x2e/0xa0
[42.937] ? __x64_sys_ioctl+0x88/0xc0
[42.937] __x64_sys_ioctl+0x88/0xc0
[42.937] do_syscall_64+0x38/0x90
[42.937] entry_SYSCALL_64_after_hwframe+0x72/0xdc
[42.937] RIP: 0033:0x7f381a6ffe9b
[42.937] Code: 00 48 89 44 24 (...)
[42.937] RSP: 002b:00007ffd45ecf060 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[42.937] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f381a6ffe9b
[42.937] RDX: 00007ffd45ecf150 RSI: 00000000c4009420 RDI: 0000000000000003
[42.937] RBP: 0000000000000003 R08: 0000000000000013 R09: 0000000000000000
[42.937] R10: 00007f381a60c878 R11: 0000000000000246 R12: 00007ffd45ed0423
[42.937] R13: 00007ffd45ecf150 R14: 0000000000000000 R15: 00007ffd45ecf148
[42.937] </TASK>
[42.937] ---[ end trace 0000000000000000 ]---
[42.937] BTRFS: error (device sdc: state A) in cleanup_transaction:1977: errno=-28 No space left
[59.196] INFO: task btrfs:346772 blocked for more than 120 seconds.
[59.196] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1
[59.196] "echo 0 > /proc/sys/kernel/hung_
---truncated--- |