CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
rcu/rcuscale: Stop kfree_scale_thread thread(s) after unloading rcuscale
Running the 'kfree_rcu_test' test case [1] results in a splat [2].
The root cause is the kfree_scale_thread thread(s) continue running
after unloading the rcuscale module. This commit fixes that isue by
invoking kfree_scale_cleanup() from rcu_scale_cleanup() when removing
the rcuscale module.
[1] modprobe rcuscale kfree_rcu_test=1
// After some time
rmmod rcuscale
rmmod torture
[2] BUG: unable to handle page fault for address: ffffffffc0601a87
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
PGD 11de4f067 P4D 11de4f067 PUD 11de51067 PMD 112f4d067 PTE 0
Oops: 0010 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 1798 Comm: kfree_scale_thr Not tainted 6.3.0-rc1-rcu+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
RIP: 0010:0xffffffffc0601a87
Code: Unable to access opcode bytes at 0xffffffffc0601a5d.
RSP: 0018:ffffb25bc2e57e18 EFLAGS: 00010297
RAX: 0000000000000000 RBX: ffffffffc061f0b6 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff962fd0de RDI: ffffffff962fd0de
RBP: ffffb25bc2e57ea8 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000000
R13: 0000000000000000 R14: 000000000000000a R15: 00000000001c1dbe
FS: 0000000000000000(0000) GS:ffff921fa2200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffc0601a5d CR3: 000000011de4c006 CR4: 0000000000370ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? kvfree_call_rcu+0xf0/0x3a0
? kthread+0xf3/0x120
? kthread_complete_and_exit+0x20/0x20
? ret_from_fork+0x1f/0x30
</TASK>
Modules linked in: rfkill sunrpc ... [last unloaded: torture]
CR2: ffffffffc0601a87
---[ end trace 0000000000000000 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
usb: cdns3: Put the cdns set active part outside the spin lock
The device may be scheduled during the resume process,
so this cannot appear in atomic operations. Since
pm_runtime_set_active will resume suppliers, put set
active outside the spin lock, which is only used to
protect the struct cdns data structure, otherwise the
kernel will report the following warning:
BUG: sleeping function called from invalid context at drivers/base/power/runtime.c:1163
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 651, name: sh
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
CPU: 0 PID: 651 Comm: sh Tainted: G WC 6.1.20 #1
Hardware name: Freescale i.MX8QM MEK (DT)
Call trace:
dump_backtrace.part.0+0xe0/0xf0
show_stack+0x18/0x30
dump_stack_lvl+0x64/0x80
dump_stack+0x1c/0x38
__might_resched+0x1fc/0x240
__might_sleep+0x68/0xc0
__pm_runtime_resume+0x9c/0xe0
rpm_get_suppliers+0x68/0x1b0
__pm_runtime_set_status+0x298/0x560
cdns_resume+0xb0/0x1c0
cdns3_controller_resume.isra.0+0x1e0/0x250
cdns3_plat_resume+0x28/0x40 |
In the Linux kernel, the following vulnerability has been resolved:
drivers: staging: rtl8723bs: Fix locking in _rtw_join_timeout_handler()
Commit 041879b12ddb ("drivers: staging: rtl8192bs: Fix deadlock in
rtw_joinbss_event_prehandle()") besides fixing the deadlock also
modified _rtw_join_timeout_handler() to use spin_[un]lock_irq()
instead of spin_[un]lock_bh().
_rtw_join_timeout_handler() calls rtw_do_join() which takes
pmlmepriv->scanned_queue.lock using spin_[un]lock_bh(). This
spin_unlock_bh() call re-enables softirqs which triggers an oops in
kernel/softirq.c: __local_bh_enable_ip() when it calls
lockdep_assert_irqs_enabled():
[ 244.506087] WARNING: CPU: 2 PID: 0 at kernel/softirq.c:376 __local_bh_enable_ip+0xa6/0x100
...
[ 244.509022] Call Trace:
[ 244.509048] <IRQ>
[ 244.509100] _rtw_join_timeout_handler+0x134/0x170 [r8723bs]
[ 244.509468] ? __pfx__rtw_join_timeout_handler+0x10/0x10 [r8723bs]
[ 244.509772] ? __pfx__rtw_join_timeout_handler+0x10/0x10 [r8723bs]
[ 244.510076] call_timer_fn+0x95/0x2a0
[ 244.510200] __run_timers.part.0+0x1da/0x2d0
This oops is causd by the switch to spin_[un]lock_irq() which disables
the IRQs for the entire duration of _rtw_join_timeout_handler().
Disabling the IRQs is not necessary since all code taking this lock
runs from either user contexts or from softirqs, switch back to
spin_[un]lock_bh() to fix this. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Remove unused nvme_ls_waitq wait queue
System crash when qla2x00_start_sp(sp) returns error code EGAIN and wake_up
gets called for uninitialized wait queue sp->nvme_ls_waitq.
qla2xxx [0000:37:00.1]-2121:5: Returning existing qpair of ffff8ae2c0513400 for idx=0
qla2xxx [0000:37:00.1]-700e:5: qla2x00_start_sp failed = 11
BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
PGD 0 P4D 0
Oops: 0000 [#1] SMP NOPTI
Hardware name: HPE ProLiant DL360 Gen10/ProLiant DL360 Gen10, BIOS U32 09/03/2021
Workqueue: nvme-wq nvme_fc_connect_ctrl_work [nvme_fc]
RIP: 0010:__wake_up_common+0x4c/0x190
RSP: 0018:ffff95f3e0cb7cd0 EFLAGS: 00010086
RAX: 0000000000000000 RBX: ffff8b08d3b26328 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000003 RDI: ffff8b08d3b26320
RBP: 0000000000000001 R08: 0000000000000000 R09: ffffffffffffffe8
R10: 0000000000000000 R11: ffff95f3e0cb7a60 R12: ffff95f3e0cb7d20
R13: 0000000000000003 R14: 0000000000000000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8b2fdf6c0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000002f1e410002 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
__wake_up_common_lock+0x7c/0xc0
qla_nvme_ls_req+0x355/0x4c0 [qla2xxx]
? __nvme_fc_send_ls_req+0x260/0x380 [nvme_fc]
? nvme_fc_send_ls_req.constprop.42+0x1a/0x45 [nvme_fc]
? nvme_fc_connect_ctrl_work.cold.63+0x1e3/0xa7d [nvme_fc]
Remove unused nvme_ls_waitq wait queue. nvme_ls_waitq logic was removed
previously in the commits tagged Fixed: below. |
In the Linux kernel, the following vulnerability has been resolved:
ubifs: Fix memory leak in ubifs_sysfs_init()
When insmod ubifs.ko, a kmemleak reported as below:
unreferenced object 0xffff88817fb1a780 (size 8):
comm "insmod", pid 25265, jiffies 4295239702 (age 100.130s)
hex dump (first 8 bytes):
75 62 69 66 73 00 ff ff ubifs...
backtrace:
[<ffffffff81b3fc4c>] slab_post_alloc_hook+0x9c/0x3c0
[<ffffffff81b44bf3>] __kmalloc_track_caller+0x183/0x410
[<ffffffff8198d3da>] kstrdup+0x3a/0x80
[<ffffffff8198d486>] kstrdup_const+0x66/0x80
[<ffffffff83989325>] kvasprintf_const+0x155/0x190
[<ffffffff83bf55bb>] kobject_set_name_vargs+0x5b/0x150
[<ffffffff83bf576b>] kobject_set_name+0xbb/0xf0
[<ffffffff8100204c>] do_one_initcall+0x14c/0x5a0
[<ffffffff8157e380>] do_init_module+0x1f0/0x660
[<ffffffff815857be>] load_module+0x6d7e/0x7590
[<ffffffff8158644f>] __do_sys_finit_module+0x19f/0x230
[<ffffffff815866b3>] __x64_sys_finit_module+0x73/0xb0
[<ffffffff88c98e85>] do_syscall_64+0x35/0x80
[<ffffffff88e00087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
When kset_register() failed, we should call kset_put to cleanup it. |
In the Linux kernel, the following vulnerability has been resolved:
net: ena: fix shift-out-of-bounds in exponential backoff
The ENA adapters on our instances occasionally reset. Once recently
logged a UBSAN failure to console in the process:
UBSAN: shift-out-of-bounds in build/linux/drivers/net/ethernet/amazon/ena/ena_com.c:540:13
shift exponent 32 is too large for 32-bit type 'unsigned int'
CPU: 28 PID: 70012 Comm: kworker/u72:2 Kdump: loaded not tainted 5.15.117
Hardware name: Amazon EC2 c5d.9xlarge/, BIOS 1.0 10/16/2017
Workqueue: ena ena_fw_reset_device [ena]
Call Trace:
<TASK>
dump_stack_lvl+0x4a/0x63
dump_stack+0x10/0x16
ubsan_epilogue+0x9/0x36
__ubsan_handle_shift_out_of_bounds.cold+0x61/0x10e
? __const_udelay+0x43/0x50
ena_delay_exponential_backoff_us.cold+0x16/0x1e [ena]
wait_for_reset_state+0x54/0xa0 [ena]
ena_com_dev_reset+0xc8/0x110 [ena]
ena_down+0x3fe/0x480 [ena]
ena_destroy_device+0xeb/0xf0 [ena]
ena_fw_reset_device+0x30/0x50 [ena]
process_one_work+0x22b/0x3d0
worker_thread+0x4d/0x3f0
? process_one_work+0x3d0/0x3d0
kthread+0x12a/0x150
? set_kthread_struct+0x50/0x50
ret_from_fork+0x22/0x30
</TASK>
Apparently, the reset delays are getting so large they can trigger a
UBSAN panic.
Looking at the code, the current timeout is capped at 5000us. Using a
base value of 100us, the current code will overflow after (1<<29). Even
at values before 32, this function wraps around, perhaps
unintentionally.
Cap the value of the exponent used for this backoff at (1<<16) which is
larger than currently necessary, but large enough to support bigger
values in the future. |
Insertion of Sensitive Information Into Sent Data vulnerability in ArgusTech BILGER allows Choosing Message Identifier.This issue affects BILGER: before 2.4.6. |
Authorization Bypass Through User-Controlled Key vulnerability with user privileges in ArgusTech BILGER allows Exploitation of Trusted Identifiers.This issue affects BILGER: before 2.4.6. |
In the Linux kernel, the following vulnerability has been resolved:
md/raid10: fix leak of 'r10bio->remaining' for recovery
raid10_sync_request() will add 'r10bio->remaining' for both rdev and
replacement rdev. However, if the read io fails, recovery_request_write()
returns without issuing the write io, in this case, end_sync_request()
is only called once and 'remaining' is leaked, cause an io hang.
Fix the problem by decreasing 'remaining' according to if 'bio' and
'repl_bio' is valid. |
In the Linux kernel, the following vulnerability has been resolved:
media: bdisp: Add missing check for create_workqueue
Add the check for the return value of the create_workqueue
in order to avoid NULL pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
drm/client: Fix memory leak in drm_client_modeset_probe
When a new mode is set to modeset->mode, the previous mode should be freed.
This fixes the following kmemleak report:
drm_mode_duplicate+0x45/0x220 [drm]
drm_client_modeset_probe+0x944/0xf50 [drm]
__drm_fb_helper_initial_config_and_unlock+0xb4/0x2c0 [drm_kms_helper]
drm_fbdev_client_hotplug+0x2bc/0x4d0 [drm_kms_helper]
drm_client_register+0x169/0x240 [drm]
ast_pci_probe+0x142/0x190 [ast]
local_pci_probe+0xdc/0x180
work_for_cpu_fn+0x4e/0xa0
process_one_work+0x8b7/0x1540
worker_thread+0x70a/0xed0
kthread+0x29f/0x340
ret_from_fork+0x1f/0x30 |
This issue was addressed with improved entitlements. This issue is fixed in macOS Tahoe 26. An app may be able to access user-sensitive data. |
The issue was addressed with improved memory handling. This issue is fixed in Safari 26, visionOS 26, watchOS 26, macOS Tahoe 26, iOS 26 and iPadOS 26. Processing maliciously crafted web content may lead to an unexpected Safari crash. |
The Blaze Demo Importer plugin for WordPress is vulnerable to unauthorized limited plugin install due to a missing capability check on the 'blaze_demo_importer_install_plugin' function in all versions up to, and including, 1.0.12. This makes it possible for authenticated attackers, with Subscriber-level access and above, to install and activate a limited number of specific plugins. The News Kit Elementor Addons plugin and a BlazeThemes theme must be installed and activated in order to exploit the vulnerability. |
A logic issue was addressed with improved checks. This issue is fixed in macOS Sequoia 15.7, macOS Sonoma 14.8, macOS Tahoe 26. An app may be able to access sensitive user data. |
A permissions issue was addressed with additional restrictions. This issue is fixed in macOS Sonoma 14.8, macOS Tahoe 26. An app may be able to access protected user data. |
The Spring Security annotation detection mechanism may not correctly resolve annotations on methods within type hierarchies with a parameterized super type with unbounded generics. This can be an issue when using @PreAuthorize and other method security annotations, resulting in an authorization bypass.
Your application may be affected by this if you are using Spring Security's @EnableMethodSecurity feature.
You are not affected by this if you are not using @EnableMethodSecurity or if you do not use security annotations on methods in generic superclasses or generic interfaces.
This CVE is published in conjunction with CVE-2025-41249 https://spring.io/security/cve-2025-41249 . |
The Spring Framework annotation detection mechanism may not correctly resolve annotations on methods within type hierarchies with a parameterized super type with unbounded generics. This can be an issue if such annotations are used for authorization decisions.
Your application may be affected by this if you are using Spring Security's @EnableMethodSecurity feature.
You are not affected by this if you are not using @EnableMethodSecurity or if you do not use security annotations on methods in generic superclasses or generic interfaces.
This CVE is published in conjunction with CVE-2025-41248 https://spring.io/security/cve-2025-41248 . |
A parsing issue in the handling of directory paths was addressed with improved path validation. This issue is fixed in macOS Sonoma 14.8, macOS Sequoia 15.7, visionOS 26, watchOS 26, macOS Tahoe 26, iOS 26 and iPadOS 26. An app may be able to access sensitive user data. |
Multiple cross-site scripting (XSS) vulnerabilities in Liferay Portal 7.3.0 through 7.4.3.111, and Liferay DXP 2023.Q4.0, 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92 and 7.3 GA through update 36 allow remote attackers to inject arbitrary web script or HTML via a crafted payload injected into a "Rich Text" type field to (1) a web content structure, (2) a Documents and Media Document Type , or (3) custom assets that uses the Data Engine's module Rich Text field. |