| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| BACnet Protocol Stack library provides a BACnet application layer, network layer and media access (MAC) layer communications services. Prior to 1.5.0.rc2, The npdu_is_expected_reply function in src/bacnet/npdu.c indexes request_pdu[offset+2/3/5] and reply_pdu[offset+1/2/4] without verifying that those APDU bytes exist. bacnet_npdu_decode() can return offset == 2 for a 2-byte NPDU, so tiny PDUs pass the version check and then get read out of bounds. On ASan/MPU/strict builds this is an immediate crash (DoS). On unprotected builds it is undefined behavior and can mis-route replies; RCE is unlikely because only reads occur, but DoS is reliable. |
| The warehouse management system version 1.2 contains an arbitrary file read vulnerability. The endpoint `/file/showImageByPath` does not sanitize user-controlled path parameters. An attacker could exploit directory traversal to read arbitrary files on the server's file system. This could lead to the leakage of sensitive system information. |
| zdh_web is a data collection, processing, monitoring, scheduling, and management platform. In zdh_web thru 5.6.17, insufficient validation of file upload paths in the application allows an authenticated user to write arbitrary files to the server file system, potentially overwriting existing files and leading to privilege escalation or remote code execution. |
| A security vulnerability has been detected in UTT 进取 520W 1.7.7-180627. Impacted is the function strcpy of the file /goform/formConfigDnsFilterGlobal. Such manipulation of the argument timeRangeName leads to buffer overflow. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| HedgeDoc is an open source, real-time, collaborative, markdown notes application. Prior to 1.10.4, some of HedgeDoc's OAuth2 endpoints for social login providers such as Google, GitHub, GitLab, Facebook or Dropbox lack CSRF protection, since they don't send a state parameter and verify the response using this parameter. This vulnerability is fixed in 1.10.4. |
| The Widgets for Google Reviews plugin for WordPress is vulnerable to Stored Cross-Site Scripting in all versions up to, and including, 13.2.4 due to insufficient input sanitization and output escaping on Google Reviews data imported by the plugin. This makes it possible for unauthenticated attackers to inject arbitrary web scripts that will execute in the admin panel (and potentially on the frontend) whenever a user accesses imported reviews, granted they can add a malicious review to a Google Place that is connected to the vulnerable site. |
| The g-FFL Cockpit plugin for WordPress is vulnerable to unauthorized modification of data due to IP-based authorization that can be spoofed in the handle_enqueue_only() function in all versions up to, and including, 1.7.1. This makes it possible for unauthenticated attackers to delete arbitrary products. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: free copynotify stateid in nfs4_free_ol_stateid()
Typically copynotify stateid is freed either when parent's stateid
is being close/freed or in nfsd4_laundromat if the stateid hasn't
been used in a lease period.
However, in case when the server got an OPEN (which created
a parent stateid), followed by a COPY_NOTIFY using that stateid,
followed by a client reboot. New client instance while doing
CREATE_SESSION would force expire previous state of this client.
It leads to the open state being freed thru release_openowner->
nfs4_free_ol_stateid() and it finds that it still has copynotify
stateid associated with it. We currently print a warning and is
triggerred
WARNING: CPU: 1 PID: 8858 at fs/nfsd/nfs4state.c:1550 nfs4_free_ol_stateid+0xb0/0x100 [nfsd]
This patch, instead, frees the associated copynotify stateid here.
If the parent stateid is freed (without freeing the copynotify
stateids associated with it), it leads to the list corruption
when laundromat ends up freeing the copynotify state later.
[ 1626.839430] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
[ 1626.842828] Modules linked in: nfnetlink_queue nfnetlink_log bluetooth cfg80211 rpcrdma rdma_cm iw_cm ib_cm ib_core nfsd nfs_acl lockd grace nfs_localio ext4 crc16 mbcache jbd2 overlay uinput snd_seq_dummy snd_hrtimer qrtr rfkill vfat fat uvcvideo snd_hda_codec_generic videobuf2_vmalloc videobuf2_memops snd_hda_intel uvc snd_intel_dspcfg videobuf2_v4l2 videobuf2_common snd_hda_codec snd_hda_core videodev snd_hwdep snd_seq mc snd_seq_device snd_pcm snd_timer snd soundcore sg loop auth_rpcgss vsock_loopback vmw_vsock_virtio_transport_common vmw_vsock_vmci_transport vmw_vmci vsock xfs 8021q garp stp llc mrp nvme ghash_ce e1000e nvme_core sr_mod nvme_keyring nvme_auth cdrom vmwgfx drm_ttm_helper ttm sunrpc dm_mirror dm_region_hash dm_log iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi fuse dm_multipath dm_mod nfnetlink
[ 1626.855594] CPU: 2 UID: 0 PID: 199 Comm: kworker/u24:33 Kdump: loaded Tainted: G B W 6.17.0-rc7+ #22 PREEMPT(voluntary)
[ 1626.857075] Tainted: [B]=BAD_PAGE, [W]=WARN
[ 1626.857573] Hardware name: VMware, Inc. VMware20,1/VBSA, BIOS VMW201.00V.24006586.BA64.2406042154 06/04/2024
[ 1626.858724] Workqueue: nfsd4 laundromat_main [nfsd]
[ 1626.859304] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 1626.860010] pc : __list_del_entry_valid_or_report+0x148/0x200
[ 1626.860601] lr : __list_del_entry_valid_or_report+0x148/0x200
[ 1626.861182] sp : ffff8000881d7a40
[ 1626.861521] x29: ffff8000881d7a40 x28: 0000000000000018 x27: ffff0000c2a98200
[ 1626.862260] x26: 0000000000000600 x25: 0000000000000000 x24: ffff8000881d7b20
[ 1626.862986] x23: ffff0000c2a981e8 x22: 1fffe00012410e7d x21: ffff0000920873e8
[ 1626.863701] x20: ffff0000920873e8 x19: ffff000086f22998 x18: 0000000000000000
[ 1626.864421] x17: 20747562202c3839 x16: 3932326636383030 x15: 3030666666662065
[ 1626.865092] x14: 6220646c756f6873 x13: 0000000000000001 x12: ffff60004fd9e4a3
[ 1626.865713] x11: 1fffe0004fd9e4a2 x10: ffff60004fd9e4a2 x9 : dfff800000000000
[ 1626.866320] x8 : 00009fffb0261b5e x7 : ffff00027ecf2513 x6 : 0000000000000001
[ 1626.866938] x5 : ffff00027ecf2510 x4 : ffff60004fd9e4a3 x3 : 0000000000000000
[ 1626.867553] x2 : 0000000000000000 x1 : ffff000096069640 x0 : 000000000000006d
[ 1626.868167] Call trace:
[ 1626.868382] __list_del_entry_valid_or_report+0x148/0x200 (P)
[ 1626.868876] _free_cpntf_state_locked+0xd0/0x268 [nfsd]
[ 1626.869368] nfs4_laundromat+0x6f8/0x1058 [nfsd]
[ 1626.869813] laundromat_main+0x24/0x60 [nfsd]
[ 1626.870231] process_one_work+0x584/0x1050
[ 1626.870595] worker_thread+0x4c4/0xc60
[ 1626.870893] kthread+0x2f8/0x398
[ 1626.871146] ret_from_fork+0x10/0x20
[ 1626.871422] Code: aa1303e1 aa1403e3 910e8000 97bc55d7 (d4210000)
[ 1626.871892] SMP: stopping secondary CPUs |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: guest_memfd: Remove bindings on memslot deletion when gmem is dying
When unbinding a memslot from a guest_memfd instance, remove the bindings
even if the guest_memfd file is dying, i.e. even if its file refcount has
gone to zero. If the memslot is freed before the file is fully released,
nullifying the memslot side of the binding in kvm_gmem_release() will
write to freed memory, as detected by syzbot+KASAN:
==================================================================
BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x176/0x440 virt/kvm/guest_memfd.c:353
Write of size 8 at addr ffff88807befa508 by task syz.0.17/6022
CPU: 0 UID: 0 PID: 6022 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x240 mm/kasan/report.c:482
kasan_report+0x118/0x150 mm/kasan/report.c:595
kvm_gmem_release+0x176/0x440 virt/kvm/guest_memfd.c:353
__fput+0x44c/0xa70 fs/file_table.c:468
task_work_run+0x1d4/0x260 kernel/task_work.c:227
resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
exit_to_user_mode_loop+0xe9/0x130 kernel/entry/common.c:43
exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline]
syscall_exit_to_user_mode_work include/linux/entry-common.h:175 [inline]
syscall_exit_to_user_mode include/linux/entry-common.h:210 [inline]
do_syscall_64+0x2bd/0xfa0 arch/x86/entry/syscall_64.c:100
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fbeeff8efc9
</TASK>
Allocated by task 6023:
kasan_save_stack mm/kasan/common.c:56 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:77
poison_kmalloc_redzone mm/kasan/common.c:397 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:414
kasan_kmalloc include/linux/kasan.h:262 [inline]
__kmalloc_cache_noprof+0x3e2/0x700 mm/slub.c:5758
kmalloc_noprof include/linux/slab.h:957 [inline]
kzalloc_noprof include/linux/slab.h:1094 [inline]
kvm_set_memory_region+0x747/0xb90 virt/kvm/kvm_main.c:2104
kvm_vm_ioctl_set_memory_region+0x6f/0xd0 virt/kvm/kvm_main.c:2154
kvm_vm_ioctl+0x957/0xc60 virt/kvm/kvm_main.c:5201
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:583
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 6023:
kasan_save_stack mm/kasan/common.c:56 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:77
kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:584
poison_slab_object mm/kasan/common.c:252 [inline]
__kasan_slab_free+0x5c/0x80 mm/kasan/common.c:284
kasan_slab_free include/linux/kasan.h:234 [inline]
slab_free_hook mm/slub.c:2533 [inline]
slab_free mm/slub.c:6622 [inline]
kfree+0x19a/0x6d0 mm/slub.c:6829
kvm_set_memory_region+0x9c4/0xb90 virt/kvm/kvm_main.c:2130
kvm_vm_ioctl_set_memory_region+0x6f/0xd0 virt/kvm/kvm_main.c:2154
kvm_vm_ioctl+0x957/0xc60 virt/kvm/kvm_main.c:5201
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:583
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Deliberately don't acquire filemap invalid lock when the file is dying as
the lifecycle of f_mapping is outside the purview of KVM. Dereferencing
the mapping is *probably* fine, but there's no need to invalidate anything
as memslot deletion is responsible for zapping SPTEs, and the only code
that can access the dying file is kvm_gmem_release(), whose core code is
mutual
---truncated--- |
| The Cute News Ticker plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'color' shortcode attribute in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Validate command header size against SVGA_CMD_MAX_DATASIZE
This data originates from userspace and is used in buffer offset
calculations which could potentially overflow causing an out-of-bounds
access. |
| The Helloprint plugin for WordPress is vulnerable to Missing Authorization in versions up to, and including, 2.1.2. This is due to the plugin registering a public REST API endpoint without implementing authorization checks to verify request authenticity. This makes it possible for unauthenticated attackers to arbitrarily modify WooCommerce order statuses via the /wp-json/helloprint/v1/complete_order_from_helloprint_callback endpoint by providing a valid order reference ID. |
| The Extra Post Images plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'id' parameter of the extra-images shortcode in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The Canadian Nutrition Facts Label plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'percentage' field in the Nutrition Label custom post type in all versions up to, and including, 3.0 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The TR Timthumb plugin for WordPress is vulnerable to Stored Cross-Site Scripting via shortcode attributes in all versions up to, and including, 1.0.4 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: hide VRAM sysfs attributes on GPUs without VRAM
Otherwise accessing them can cause a crash. |
| The Starter Templates plugin for WordPress is vulnerable to arbitrary file upload in all versions up to, and including, 4.4.41. This is due to insufficient file type validation detecting WXR files, allowing double extension files to bypass sanitization while being accepted as a valid WXR file. This makes it possible for authenticated attackers, with author-level access and above, to upload arbitrary files on the affected site's server which may make remote code execution possible. |
| In the Linux kernel, the following vulnerability has been resolved:
mm, swap: fix potential UAF issue for VMA readahead
Since commit 78524b05f1a3 ("mm, swap: avoid redundant swap device
pinning"), the common helper for allocating and preparing a folio in the
swap cache layer no longer tries to get a swap device reference
internally, because all callers of __read_swap_cache_async are already
holding a swap entry reference. The repeated swap device pinning isn't
needed on the same swap device.
Caller of VMA readahead is also holding a reference to the target entry's
swap device, but VMA readahead walks the page table, so it might encounter
swap entries from other devices, and call __read_swap_cache_async on
another device without holding a reference to it.
So it is possible to cause a UAF when swapoff of device A raced with
swapin on device B, and VMA readahead tries to read swap entries from
device A. It's not easy to trigger, but in theory, it could cause real
issues.
Make VMA readahead try to get the device reference first if the swap
device is a different one from the target entry. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Flush shmem writes before mapping buffers CPU-uncached
The shmem layer zeroes out the new pages using cached mappings, and if
we don't CPU-flush we might leave dirty cachelines behind, leading to
potential data leaks and/or asynchronous buffer corruption when dirty
cachelines are evicted. |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: Fix use-after-free in tipc_mon_reinit_self().
syzbot reported use-after-free of tipc_net(net)->monitors[]
in tipc_mon_reinit_self(). [0]
The array is protected by RTNL, but tipc_mon_reinit_self()
iterates over it without RTNL.
tipc_mon_reinit_self() is called from tipc_net_finalize(),
which is always under RTNL except for tipc_net_finalize_work().
Let's hold RTNL in tipc_net_finalize_work().
[0]:
BUG: KASAN: slab-use-after-free in __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
BUG: KASAN: slab-use-after-free in _raw_spin_lock_irqsave+0xa7/0xf0 kernel/locking/spinlock.c:162
Read of size 1 at addr ffff88805eae1030 by task kworker/0:7/5989
CPU: 0 UID: 0 PID: 5989 Comm: kworker/0:7 Not tainted syzkaller #0 PREEMPT_{RT,(full)}
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025
Workqueue: events tipc_net_finalize_work
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x240 mm/kasan/report.c:482
kasan_report+0x118/0x150 mm/kasan/report.c:595
__kasan_check_byte+0x2a/0x40 mm/kasan/common.c:568
kasan_check_byte include/linux/kasan.h:399 [inline]
lock_acquire+0x8d/0x360 kernel/locking/lockdep.c:5842
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0xa7/0xf0 kernel/locking/spinlock.c:162
rtlock_slowlock kernel/locking/rtmutex.c:1894 [inline]
rwbase_rtmutex_lock_state kernel/locking/spinlock_rt.c:160 [inline]
rwbase_write_lock+0xd3/0x7e0 kernel/locking/rwbase_rt.c:244
rt_write_lock+0x76/0x110 kernel/locking/spinlock_rt.c:243
write_lock_bh include/linux/rwlock_rt.h:99 [inline]
tipc_mon_reinit_self+0x79/0x430 net/tipc/monitor.c:718
tipc_net_finalize+0x115/0x190 net/tipc/net.c:140
process_one_work kernel/workqueue.c:3236 [inline]
process_scheduled_works+0xade/0x17b0 kernel/workqueue.c:3319
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3400
kthread+0x70e/0x8a0 kernel/kthread.c:463
ret_from_fork+0x439/0x7d0 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
Allocated by task 6089:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:388 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:405
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x1a8/0x320 mm/slub.c:4407
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1039 [inline]
tipc_mon_create+0xc3/0x4d0 net/tipc/monitor.c:657
tipc_enable_bearer net/tipc/bearer.c:357 [inline]
__tipc_nl_bearer_enable+0xe16/0x13f0 net/tipc/bearer.c:1047
__tipc_nl_compat_doit net/tipc/netlink_compat.c:371 [inline]
tipc_nl_compat_doit+0x3bc/0x5f0 net/tipc/netlink_compat.c:393
tipc_nl_compat_handle net/tipc/netlink_compat.c:-1 [inline]
tipc_nl_compat_recv+0x83c/0xbe0 net/tipc/netlink_compat.c:1321
genl_family_rcv_msg_doit+0x215/0x300 net/netlink/genetlink.c:1115
genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline]
genl_rcv_msg+0x60e/0x790 net/netlink/genetlink.c:1210
netlink_rcv_skb+0x208/0x470 net/netlink/af_netlink.c:2552
genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219
netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline]
netlink_unicast+0x846/0xa10 net/netlink/af_netlink.c:1346
netlink_sendmsg+0x805/0xb30 net/netlink/af_netlink.c:1896
sock_sendmsg_nosec net/socket.c:714 [inline]
__sock_sendmsg+0x21c/0x270 net/socket.c:729
____sys_sendmsg+0x508/0x820 net/socket.c:2614
___sys_sendmsg+0x21f/0x2a0 net/socket.c:2668
__sys_sendmsg net/socket.c:2700 [inline]
__do_sys_sendmsg net/socket.c:2705 [inline]
__se_sys_sendmsg net/socket.c:2703 [inline]
__x64_sys_sendmsg+0x1a1/0x260 net/socket.c:2703
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/
---truncated--- |