CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
The Bastion provides authentication, authorization, traceability and auditability for SSH accesses. Session-recording ttyrec files, may be handled by the provided osh-encrypt-rsync script that is a helper to rotate, encrypt, sign, copy, and optionally move them to a remote storage periodically, if configured to. When running, the script properly rotates and encrypts the files using the provided GPG key(s), but silently fails to sign them, even if asked to. |
jinjava is a Java-based template engine based on django template syntax, adapted to render jinja templates. Priori to 2.8.1, by using mapper.getTypeFactory().constructFromCanonical(), it is possible to instruct the underlying ObjectMapper to deserialize attacker-controlled input into arbitrary classes. This enables the creation of semi-arbitrary class instances without directly invoking restricted methods or class literals. As a result, an attacker can escape the sandbox and instantiate classes such as java.net.URL, opening up the ability to access local files and URLs(e.g., file:///etc/passwd). With further chaining, this primitive can potentially lead to remote code execution (RCE). This vulnerability is fixed in 2.8.1. |
esm.sh is a nobuild content delivery network(CDN) for modern web development. In 136 and earlier, a Local File Inclusion (LFI) issue was identified in the esm.sh service URL handling. An attacker could craft a request that causes the server to read and return files from the host filesystem (or other unintended file sources). |
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, The /api/v1/jobs and /preheats endpoints in Manager web UI are accessible without authentication. Any user with network access to the Manager can create, delete, and modify jobs, and create preheat jobs. An unauthenticated adversary with network access to a Manager web UI uses /api/v1/jobs endpoint to create hundreds of useless jobs. The Manager is in a denial-of-service state, and stops accepting requests from valid administrators. This vulnerability is fixed in 2.1.0. |
Dragonfly is an open source P2P-based file distribution and image acceleration system. Versions prior to 2.1.0 contain a server-side request forgery (SSRF) vulnerability that enables users to force DragonFly2’s components to make requests to internal services that are otherwise not accessible to them. The issue arises because the Manager API accepts a user-supplied URL when creating a Preheat job with weak validation, peers can trigger other peers to fetch an arbitrary URL through pieceManager.DownloadSource, and internal HTTP clients follow redirects, allowing a request to a malicious server to be redirected to internal services. This can be used to probe or access internal HTTP endpoints. The vulnerability is fixed in version 2.1.0. |
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, The Manager disables TLS certificate verification in HTTP clients. The clients are not configurable, so users have no way to re-enable the verification. A Manager processes dozens of preheat jobs. An adversary performs a network-level Man-in-the-Middle attack, providing invalid data to the Manager. The Manager preheats with the wrong data, which later causes a denial of service and file integrity problems. This vulnerability is fixed in 2.1.0. |
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, the processPieceFromSource method does not update the structure’s usedTraffic field, because an uninitialized variable n is used as a guard to the AddTraffic method call, instead of the result.Size variable. A task is processed by a peer. The usedTraffic metadata is not updated during the processing. Rate limiting is incorrectly applied, leading to a denial-of-service condition for the peer. This vulnerability is fixed in 2.1.0. |
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, DragonFly2 uses the os.MkdirAll function to create certain directory paths with specific access permissions. This function does not perform any permission checks when a given directory path already exists. This allows a local attacker to create a directory to be used later by DragonFly2 with broad permissions before DragonFly2 does so, potentially allowing the attacker to tamper with the files. This vulnerability is fixed in 2.1.0. |
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, the first return value of a function is dereferenced even when the function returns an error. This can result in a nil dereference, and cause code to panic. This vulnerability is fixed in 2.1.0. |
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, the gRPC API and HTTP APIs allow peers to send requests that force the recipient peer to create files in arbitrary file system locations, and to read arbitrary files. This allows peers to steal other peers’ secret data and to gain remote code execution (RCE) capabilities on the peer’s machine.This vulnerability is fixed in 2.1.0. |
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, a peer can obtain a valid TLS certificate for arbitrary IP addresses, effectively rendering the mTLS authentication useless. The issue is that the Manager’s Certificate gRPC service does not validate if the requested IP addresses “belong to” the peer requesting the certificate—that is, if the peer connects from the same IP address as the one provided in the certificate request. This vulnerability is fixed in 2.1.0. |
The Scratch Channel is a news website. If the user makes a fork, they can change the admins and make an article. Since the API uses a POST request, it will make an article. This issue is fixed in v1.2. |
Ashlar-Vellum Cobalt AR File Parsing Uninitialized Variable Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of AR files. The issue results from the lack of proper initialization of memory prior to accessing it. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25700. |
Ashlar-Vellum Cobalt VC6 File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25704. |
Ashlar-Vellum Cobalt AR File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of AR files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25943. |
Ashlar-Vellum Cobalt VC6 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25944. |
The WP Hotel Booking WordPress plugin before 2.2.3 lacks proper server-side validation for review ratings, allowing an attacker to manipulate the rating value (e.g., sending negative or out-of-range values) by intercepting and modifying requests. |
Authorization Bypass Through User-Controlled SQL Primary Key, CWE - 89 - Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') vulnerability in Logo Software Retail Sales Management allows SQL Injection, CAPEC - 7 - Blind SQL Injection.This issue affects Retail Sales Management: through 20250918.
NOTE: The vendor did not inform about the completion of the fixing process within the specified time. The CVE will be updated when new information becomes available. |
Improper Validation of Specified Type of Input vulnerability in ABB FLXEON.A remote code execution is possible due to an improper input validation.
This issue affects FLXEON: through 9.3.5. |
A vulnerability has been found in wangchenyi1996 chat_forum up to 80bdb92f5b460d36cab36e530a2c618acef5afd2. This impacts an unknown function of the file /q.php. Such manipulation of the argument path leads to cross site scripting. The attack may be launched remotely. This product operates on a rolling release basis, ensuring continuous delivery. Consequently, there are no version details for either affected or updated releases. |