| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An insufficient input validation vulnerability in NETGEAR Orbi devices'
DHCPv6 functionality allows network adjacent attackers authenticated
over WiFi or on LAN to execute OS command injections on the router.
DHCPv6 is not enabled by default. |
| pgAdmin versions 9.11 are affected by a Restore restriction bypass via key disclosure vulnerability that occurs when running in server mode and performing restores from PLAIN-format dump files. An attacker with access to the pgAdmin web interface can observe an active restore operation, extract the `\restrict` key in real time, and race the restore process by overwriting the restore script with a payload that re-enables meta-commands using `\unrestrict <key>`. This results in reliable command execution on the pgAdmin host during the restore operation. |
| Dell PowerProtect Data Domain BoostFS for Linux Ubuntu systems of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain an Incorrect Privilege Assignment vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Unauthorized access. |
| In the Linux kernel, the following vulnerability has been resolved:
ext2: Check block size validity during mount
Check that log of block size stored in the superblock has sensible
value. Otherwise the shift computing the block size can overflow leading
to undefined behavior. |
| In the Linux kernel, the following vulnerability has been resolved:
fprobe: Release rethook after the ftrace_ops is unregistered
While running bpf selftests it's possible to get following fault:
general protection fault, probably for non-canonical address \
0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC NOPTI
...
Call Trace:
<TASK>
fprobe_handler+0xc1/0x270
? __pfx_bpf_testmod_init+0x10/0x10
? __pfx_bpf_testmod_init+0x10/0x10
? bpf_fentry_test1+0x5/0x10
? bpf_fentry_test1+0x5/0x10
? bpf_testmod_init+0x22/0x80
? do_one_initcall+0x63/0x2e0
? rcu_is_watching+0xd/0x40
? kmalloc_trace+0xaf/0xc0
? do_init_module+0x60/0x250
? __do_sys_finit_module+0xac/0x120
? do_syscall_64+0x37/0x90
? entry_SYSCALL_64_after_hwframe+0x72/0xdc
</TASK>
In unregister_fprobe function we can't release fp->rethook while it's
possible there are some of its users still running on another cpu.
Moving rethook_free call after fp->ops is unregistered with
unregister_ftrace_function call. |
| In the Linux kernel, the following vulnerability has been resolved:
rcu-tasks: Avoid pr_info() with spin lock in cblist_init_generic()
pr_info() is called with rtp->cbs_gbl_lock spin lock locked. Because
pr_info() calls printk() that might sleep, this will result in BUG
like below:
[ 0.206455] cblist_init_generic: Setting adjustable number of callback queues.
[ 0.206463]
[ 0.206464] =============================
[ 0.206464] [ BUG: Invalid wait context ]
[ 0.206465] 5.19.0-00428-g9de1f9c8ca51 #5 Not tainted
[ 0.206466] -----------------------------
[ 0.206466] swapper/0/1 is trying to lock:
[ 0.206467] ffffffffa0167a58 (&port_lock_key){....}-{3:3}, at: serial8250_console_write+0x327/0x4a0
[ 0.206473] other info that might help us debug this:
[ 0.206473] context-{5:5}
[ 0.206474] 3 locks held by swapper/0/1:
[ 0.206474] #0: ffffffff9eb597e0 (rcu_tasks.cbs_gbl_lock){....}-{2:2}, at: cblist_init_generic.constprop.0+0x14/0x1f0
[ 0.206478] #1: ffffffff9eb579c0 (console_lock){+.+.}-{0:0}, at: _printk+0x63/0x7e
[ 0.206482] #2: ffffffff9ea77780 (console_owner){....}-{0:0}, at: console_emit_next_record.constprop.0+0x111/0x330
[ 0.206485] stack backtrace:
[ 0.206486] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-00428-g9de1f9c8ca51 #5
[ 0.206488] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014
[ 0.206489] Call Trace:
[ 0.206490] <TASK>
[ 0.206491] dump_stack_lvl+0x6a/0x9f
[ 0.206493] __lock_acquire.cold+0x2d7/0x2fe
[ 0.206496] ? stack_trace_save+0x46/0x70
[ 0.206497] lock_acquire+0xd1/0x2f0
[ 0.206499] ? serial8250_console_write+0x327/0x4a0
[ 0.206500] ? __lock_acquire+0x5c7/0x2720
[ 0.206502] _raw_spin_lock_irqsave+0x3d/0x90
[ 0.206504] ? serial8250_console_write+0x327/0x4a0
[ 0.206506] serial8250_console_write+0x327/0x4a0
[ 0.206508] console_emit_next_record.constprop.0+0x180/0x330
[ 0.206511] console_unlock+0xf7/0x1f0
[ 0.206512] vprintk_emit+0xf7/0x330
[ 0.206514] _printk+0x63/0x7e
[ 0.206516] cblist_init_generic.constprop.0.cold+0x24/0x32
[ 0.206518] rcu_init_tasks_generic+0x5/0xd9
[ 0.206522] kernel_init_freeable+0x15b/0x2a2
[ 0.206523] ? rest_init+0x160/0x160
[ 0.206526] kernel_init+0x11/0x120
[ 0.206527] ret_from_fork+0x1f/0x30
[ 0.206530] </TASK>
[ 0.207018] cblist_init_generic: Setting shift to 1 and lim to 1.
This patch moves pr_info() so that it is called without
rtp->cbs_gbl_lock locked. |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: amd-pstate-ut: Fix kernel panic when loading the driver
After loading the amd-pstate-ut driver, amd_pstate_ut_check_perf()
and amd_pstate_ut_check_freq() use cpufreq_cpu_get() to get the policy
of the CPU and mark it as busy.
In these functions, cpufreq_cpu_put() should be used to release the
policy, but it is not, so any other entity trying to access the policy
is blocked indefinitely.
One such scenario is when amd_pstate mode is changed, leading to the
following splat:
[ 1332.103727] INFO: task bash:2929 blocked for more than 120 seconds.
[ 1332.110001] Not tainted 6.5.0-rc2-amd-pstate-ut #5
[ 1332.115315] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1332.123140] task:bash state:D stack:0 pid:2929 ppid:2873 flags:0x00004006
[ 1332.123143] Call Trace:
[ 1332.123145] <TASK>
[ 1332.123148] __schedule+0x3c1/0x16a0
[ 1332.123154] ? _raw_read_lock_irqsave+0x2d/0x70
[ 1332.123157] schedule+0x6f/0x110
[ 1332.123160] schedule_timeout+0x14f/0x160
[ 1332.123162] ? preempt_count_add+0x86/0xd0
[ 1332.123165] __wait_for_common+0x92/0x190
[ 1332.123168] ? __pfx_schedule_timeout+0x10/0x10
[ 1332.123170] wait_for_completion+0x28/0x30
[ 1332.123173] cpufreq_policy_put_kobj+0x4d/0x90
[ 1332.123177] cpufreq_policy_free+0x157/0x1d0
[ 1332.123178] ? preempt_count_add+0x58/0xd0
[ 1332.123180] cpufreq_remove_dev+0xb6/0x100
[ 1332.123182] subsys_interface_unregister+0x114/0x120
[ 1332.123185] ? preempt_count_add+0x58/0xd0
[ 1332.123187] ? __pfx_amd_pstate_change_driver_mode+0x10/0x10
[ 1332.123190] cpufreq_unregister_driver+0x3b/0xd0
[ 1332.123192] amd_pstate_change_driver_mode+0x1e/0x50
[ 1332.123194] store_status+0xe9/0x180
[ 1332.123197] dev_attr_store+0x1b/0x30
[ 1332.123199] sysfs_kf_write+0x42/0x50
[ 1332.123202] kernfs_fop_write_iter+0x143/0x1d0
[ 1332.123204] vfs_write+0x2df/0x400
[ 1332.123208] ksys_write+0x6b/0xf0
[ 1332.123210] __x64_sys_write+0x1d/0x30
[ 1332.123213] do_syscall_64+0x60/0x90
[ 1332.123216] ? fpregs_assert_state_consistent+0x2e/0x50
[ 1332.123219] ? exit_to_user_mode_prepare+0x49/0x1a0
[ 1332.123223] ? irqentry_exit_to_user_mode+0xd/0x20
[ 1332.123225] ? irqentry_exit+0x3f/0x50
[ 1332.123226] ? exc_page_fault+0x8e/0x190
[ 1332.123228] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 1332.123232] RIP: 0033:0x7fa74c514a37
[ 1332.123234] RSP: 002b:00007ffe31dd0788 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 1332.123238] RAX: ffffffffffffffda RBX: 0000000000000008 RCX: 00007fa74c514a37
[ 1332.123239] RDX: 0000000000000008 RSI: 000055e27c447aa0 RDI: 0000000000000001
[ 1332.123241] RBP: 000055e27c447aa0 R08: 00007fa74c5d1460 R09: 000000007fffffff
[ 1332.123242] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000008
[ 1332.123244] R13: 00007fa74c61a780 R14: 00007fa74c616600 R15: 00007fa74c615a00
[ 1332.123247] </TASK>
Fix this by calling cpufreq_cpu_put() wherever necessary.
[ rjw: Subject and changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: amd-pstate: fix global sysfs attribute type
In commit 3666062b87ec ("cpufreq: amd-pstate: move to use bus_get_dev_root()")
the "amd_pstate" attributes where moved from a dedicated kobject to the
cpu root kobject.
While the dedicated kobject expects to contain kobj_attributes the root
kobject needs device_attributes.
As the changed arguments are not used by the callbacks it works most of
the time.
However CFI will detect this issue:
[ 4947.849350] CFI failure at dev_attr_show+0x24/0x60 (target: show_status+0x0/0x70; expected type: 0x8651b1de)
...
[ 4947.849409] Call Trace:
[ 4947.849410] <TASK>
[ 4947.849411] ? __warn+0xcf/0x1c0
[ 4947.849414] ? dev_attr_show+0x24/0x60
[ 4947.849415] ? report_cfi_failure+0x4e/0x60
[ 4947.849417] ? handle_cfi_failure+0x14c/0x1d0
[ 4947.849419] ? __cfi_show_status+0x10/0x10
[ 4947.849420] ? handle_bug+0x4f/0x90
[ 4947.849421] ? exc_invalid_op+0x1a/0x60
[ 4947.849422] ? asm_exc_invalid_op+0x1a/0x20
[ 4947.849424] ? __cfi_show_status+0x10/0x10
[ 4947.849425] ? dev_attr_show+0x24/0x60
[ 4947.849426] sysfs_kf_seq_show+0xa6/0x110
[ 4947.849433] seq_read_iter+0x16c/0x4b0
[ 4947.849436] vfs_read+0x272/0x2d0
[ 4947.849438] ksys_read+0x72/0xe0
[ 4947.849439] do_syscall_64+0x76/0xb0
[ 4947.849440] ? do_user_addr_fault+0x252/0x650
[ 4947.849442] ? exc_page_fault+0x7a/0x1b0
[ 4947.849443] entry_SYSCALL_64_after_hwframe+0x72/0xdc |
| In the Linux kernel, the following vulnerability has been resolved:
HID: hyperv: avoid struct memcpy overrun warning
A previous patch addressed the fortified memcpy warning for most
builds, but I still see this one with gcc-9:
In file included from include/linux/string.h:254,
from drivers/hid/hid-hyperv.c:8:
In function 'fortify_memcpy_chk',
inlined from 'mousevsc_on_receive' at drivers/hid/hid-hyperv.c:272:3:
include/linux/fortify-string.h:583:4: error: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Werror=attribute-warning]
583 | __write_overflow_field(p_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
My guess is that the WARN_ON() itself is what confuses gcc, so it no
longer sees that there is a correct range check. Rework the code in a
way that helps readability and avoids the warning. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_pipapo: clamp maximum map bucket size to INT_MAX
Otherwise, it is possible to hit WARN_ON_ONCE in __kvmalloc_node_noprof()
when resizing hashtable because __GFP_NOWARN is unset.
Similar to:
b541ba7d1f5a ("netfilter: conntrack: clamp maximum hashtable size to INT_MAX") |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: uprobes: Add missing fence.i after building the XOL buffer
The XOL (execute out-of-line) buffer is used to single-step the
replaced instruction(s) for uprobes. The RISC-V port was missing a
proper fence.i (i$ flushing) after constructing the XOL buffer, which
can result in incorrect execution of stale/broken instructions.
This was found running the BPF selftests "test_progs:
uprobe_autoattach, attach_probe" on the Spacemit K1/X60, where the
uprobes tests randomly blew up. |
| Lack or insufficent input validation in WebGUI CLI web in Infinera G42
version R6.1.3 allows remote authenticated users to read all OS files
via crafted CLI commands.
Details: The web interface based management of the Infinera G42 appliance enables the feature of
executing a restricted set of commands. This feature
also offers the option to execute a script-file already present on the target
device. When a non-script or incorrect file is specified, the content
of the file is shown along with an error message. Due to an execution of the http service with a privileged user all files on the file system can be viewed this way. |
| An arbitrary file overwrite vulnerability in the file import process of Tarot, Astro & Healing v11.4.0 allows attackers to overwrite critical internal files, potentially leading to arbitrary code execution or exposure of sensitive information. |
| Cryptographic issue when a Trusted Zone with outdated code is triggered by a HLOS providing incorrect input. |
| A flaw has been found in WeKan up to 8.20. Affected is the function applyWipLimit of the file models/lists.js of the component Attachment Storage Handler. Executing a manipulation can lead to improper access controls. The attack can be executed remotely. Upgrading to version 8.21 is able to address this issue. This patch is called 8c0b4f79d8582932528ec2fdf2a4487c86770fb9. It is recommended to upgrade the affected component. |
| A flaw was found in Moodle. An authorization logic flaw, specifically due to incomplete role checks during the badge awarding process, allowed badges to be granted without proper verification. This could enable unauthorized users to obtain badges they are not entitled to, potentially leading to privilege escalation or unauthorized access to certain features. |
| Azure Apache Ambari Spoofing Vulnerability |
| Azure Apache Oozie Spoofing Vulnerability |
| Azure HDInsight Apache Oozie Workflow Scheduler XXE Elevation of Privilege Vulnerability |
| Azure Apache Hive Spoofing Vulnerability |