| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Uncontrolled search path for some System Event Log Viewer Utility software for all versions within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Uncontrolled search path for the Instrumentation and Tracing Technology API (ITT API) software before version 3.25.4 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Out-of-bounds read for some Intel(R) QAT Windows software before version 2.6.0. within Ring 3: User Applications may allow a denial of service. System software adversary with an authenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Incorrect default permissions in some firmware for the Intel(R) Arc(TM) B-series GPUs within Ring 1: Device Drivers may allow an escalation of privilege. System software adversary with a privileged user combined with a low complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are not present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Untrusted pointer dereference for some Intel QuickAssist Technology software before version 2.6.0 within Ring 3: User Applications may allow an escalation of privilege. System software adversary with an authenticated user combined with a low complexity attack may enable data manipulation. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (high) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Unquoted search path for some PRI Driver software before version 03.03.1002 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Buffer overflow for some Intel(R) QAT Windows software before version 2.6.0. within Ring 3: User Applications may allow a denial of service. System software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (low), integrity (low) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper input validation for some Intel QuickAssist Technology before version 2.6.0 within Ring 3: User Applications may allow an escalation of privilege. System software adversary with an authenticated user combined with a low complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Out-of-bounds write for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts. |
| Insufficient control flow management for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts. |
| Out-of-bounds read for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts. |
| Protection mechanism failure in the UEFI firmware for the Slim Bootloader within firmware may allow an escalation of privilege. Startup code and smm adversary with a privileged user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Out-of-bounds write for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (low) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts. |
| Adobe Pass versions 3.7.3 and earlier are affected by an Incorrect Authorization vulnerability. An attacker could leverage this vulnerability to bypass security measures and gain unauthorized read and write access. Exploitation of this issue requires user interaction in that a victim must install a malicious SDK. |
| Format Plugins versions 1.1.1 and earlier are affected by an Out-of-bounds Read vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to disclose sensitive information stored in memory. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Format Plugins versions 1.1.1 and earlier are affected by a Use After Free vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to disclose sensitive information. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Format Plugins versions 1.1.1 and earlier are affected by an Out-of-bounds Read vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to access sensitive memory information. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Format Plugins versions 1.1.1 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Format Plugins versions 1.1.1 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Format Plugins versions 1.1.1 and earlier are affected by an Out-of-bounds Read vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to disclose sensitive information stored in memory. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |