| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix a kernel verifier crash in stacksafe()
Daniel Hodges reported a kernel verifier crash when playing with sched-ext.
Further investigation shows that the crash is due to invalid memory access
in stacksafe(). More specifically, it is the following code:
if (exact != NOT_EXACT &&
old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
cur->stack[spi].slot_type[i % BPF_REG_SIZE])
return false;
The 'i' iterates old->allocated_stack.
If cur->allocated_stack < old->allocated_stack the out-of-bound
access will happen.
To fix the issue add 'i >= cur->allocated_stack' check such that if
the condition is true, stacksafe() should fail. Otherwise,
cur->stack[spi].slot_type[i % BPF_REG_SIZE] memory access is legal. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en : Fix memory out-of-bounds in bnxt_fill_hw_rss_tbl()
A recent commit has modified the code in __bnxt_reserve_rings() to
set the default RSS indirection table to default only when the number
of RX rings is changing. While this works for newer firmware that
requires RX ring reservations, it causes the regression on older
firmware not requiring RX ring resrvations (BNXT_NEW_RM() returns
false).
With older firmware, RX ring reservations are not required and so
hw_resc->resv_rx_rings is not always set to the proper value. The
comparison:
if (old_rx_rings != bp->hw_resc.resv_rx_rings)
in __bnxt_reserve_rings() may be false even when the RX rings are
changing. This will cause __bnxt_reserve_rings() to skip setting
the default RSS indirection table to default to match the current
number of RX rings. This may later cause bnxt_fill_hw_rss_tbl() to
use an out-of-range index.
We already have bnxt_check_rss_tbl_no_rmgr() to handle exactly this
scenario. We just need to move it up in bnxt_need_reserve_rings()
to be called unconditionally when using older firmware. Without the
fix, if the TX rings are changing, we'll skip the
bnxt_check_rss_tbl_no_rmgr() call and __bnxt_reserve_rings() may also
skip the bnxt_set_dflt_rss_indir_tbl() call for the reason explained
in the last paragraph. Without setting the default RSS indirection
table to default, it causes the regression:
BUG: KASAN: slab-out-of-bounds in __bnxt_hwrm_vnic_set_rss+0xb79/0xe40
Read of size 2 at addr ffff8881c5809618 by task ethtool/31525
Call Trace:
__bnxt_hwrm_vnic_set_rss+0xb79/0xe40
bnxt_hwrm_vnic_rss_cfg_p5+0xf7/0x460
__bnxt_setup_vnic_p5+0x12e/0x270
__bnxt_open_nic+0x2262/0x2f30
bnxt_open_nic+0x5d/0xf0
ethnl_set_channels+0x5d4/0xb30
ethnl_default_set_doit+0x2f1/0x620 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: add missing check_func_arg_reg_off() to prevent out-of-bounds memory accesses
Currently, it's possible to pass in a modified CONST_PTR_TO_DYNPTR to
a global function as an argument. The adverse effects of this is that
BPF helpers can continue to make use of this modified
CONST_PTR_TO_DYNPTR from within the context of the global function,
which can unintentionally result in out-of-bounds memory accesses and
therefore compromise overall system stability i.e.
[ 244.157771] BUG: KASAN: slab-out-of-bounds in bpf_dynptr_data+0x137/0x140
[ 244.161345] Read of size 8 at addr ffff88810914be68 by task test_progs/302
[ 244.167151] CPU: 0 PID: 302 Comm: test_progs Tainted: G O E 6.10.0-rc3-00131-g66b586715063 #533
[ 244.174318] Call Trace:
[ 244.175787] <TASK>
[ 244.177356] dump_stack_lvl+0x66/0xa0
[ 244.179531] print_report+0xce/0x670
[ 244.182314] ? __virt_addr_valid+0x200/0x3e0
[ 244.184908] kasan_report+0xd7/0x110
[ 244.187408] ? bpf_dynptr_data+0x137/0x140
[ 244.189714] ? bpf_dynptr_data+0x137/0x140
[ 244.192020] bpf_dynptr_data+0x137/0x140
[ 244.194264] bpf_prog_b02a02fdd2bdc5fa_global_call_bpf_dynptr_data+0x22/0x26
[ 244.198044] bpf_prog_b0fe7b9d7dc3abde_callback_adjust_bpf_dynptr_reg_off+0x1f/0x23
[ 244.202136] bpf_user_ringbuf_drain+0x2c7/0x570
[ 244.204744] ? 0xffffffffc0009e58
[ 244.206593] ? __pfx_bpf_user_ringbuf_drain+0x10/0x10
[ 244.209795] bpf_prog_33ab33f6a804ba2d_user_ringbuf_callback_const_ptr_to_dynptr_reg_off+0x47/0x4b
[ 244.215922] bpf_trampoline_6442502480+0x43/0xe3
[ 244.218691] __x64_sys_prlimit64+0x9/0xf0
[ 244.220912] do_syscall_64+0xc1/0x1d0
[ 244.223043] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 244.226458] RIP: 0033:0x7ffa3eb8f059
[ 244.228582] Code: 08 89 e8 5b 5d c3 66 2e 0f 1f 84 00 00 00 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 8f 1d 0d 00 f7 d8 64 89 01 48
[ 244.241307] RSP: 002b:00007ffa3e9c6eb8 EFLAGS: 00000206 ORIG_RAX: 000000000000012e
[ 244.246474] RAX: ffffffffffffffda RBX: 00007ffa3e9c7cdc RCX: 00007ffa3eb8f059
[ 244.250478] RDX: 00007ffa3eb162b4 RSI: 0000000000000000 RDI: 00007ffa3e9c7fb0
[ 244.255396] RBP: 00007ffa3e9c6ed0 R08: 00007ffa3e9c76c0 R09: 0000000000000000
[ 244.260195] R10: 0000000000000000 R11: 0000000000000206 R12: ffffffffffffff80
[ 244.264201] R13: 000000000000001c R14: 00007ffc5d6b4260 R15: 00007ffa3e1c7000
[ 244.268303] </TASK>
Add a check_func_arg_reg_off() to the path in which the BPF verifier
verifies the arguments of global function arguments, specifically
those which take an argument of type ARG_PTR_TO_DYNPTR |
MEM_RDONLY. Also, process_dynptr_func() doesn't appear to perform any
explicit and strict type matching on the supplied register type, so
let's also enforce that a register either type PTR_TO_STACK or
CONST_PTR_TO_DYNPTR is by the caller. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv, bpf: Fix out-of-bounds issue when preparing trampoline image
We get the size of the trampoline image during the dry run phase and
allocate memory based on that size. The allocated image will then be
populated with instructions during the real patch phase. But after
commit 26ef208c209a ("bpf: Use arch_bpf_trampoline_size"), the `im`
argument is inconsistent in the dry run and real patch phase. This may
cause emit_imm in RV64 to generate a different number of instructions
when generating the 'im' address, potentially causing out-of-bounds
issues. Let's emit the maximum number of instructions for the "im"
address during dry run to fix this problem. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: Fix the sorting functionality in iio_gts_build_avail_time_table
The sorting in iio_gts_build_avail_time_table is not working as intended.
It could result in an out-of-bounds access when the time is zero.
Here are more details:
1. When the gts->itime_table[i].time_us is zero, e.g., the time
sequence is `3, 0, 1`, the inner for-loop will not terminate and do
out-of-bound writes. This is because once `times[j] > new`, the value
`new` will be added in the current position and the `times[j]` will be
moved to `j+1` position, which makes the if-condition always hold.
Meanwhile, idx will be added one, making the loop keep running without
termination and out-of-bound write.
2. If none of the gts->itime_table[i].time_us is zero, the elements
will just be copied without being sorted as described in the comment
"Sort times from all tables to one and remove duplicates".
For more details, please refer to
https://lore.kernel.org/all/6dd0d822-046c-4dd2-9532-79d7ab96ec05@gmail.com. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix slab-out-of-bounds in ext4_mb_find_good_group_avg_frag_lists()
We can trigger a slab-out-of-bounds with the following commands:
mkfs.ext4 -F /dev/$disk 10G
mount /dev/$disk /tmp/test
echo 2147483647 > /sys/fs/ext4/$disk/mb_group_prealloc
echo test > /tmp/test/file && sync
==================================================================
BUG: KASAN: slab-out-of-bounds in ext4_mb_find_good_group_avg_frag_lists+0x8a/0x200 [ext4]
Read of size 8 at addr ffff888121b9d0f0 by task kworker/u2:0/11
CPU: 0 PID: 11 Comm: kworker/u2:0 Tainted: GL 6.7.0-next-20240118 #521
Call Trace:
dump_stack_lvl+0x2c/0x50
kasan_report+0xb6/0xf0
ext4_mb_find_good_group_avg_frag_lists+0x8a/0x200 [ext4]
ext4_mb_regular_allocator+0x19e9/0x2370 [ext4]
ext4_mb_new_blocks+0x88a/0x1370 [ext4]
ext4_ext_map_blocks+0x14f7/0x2390 [ext4]
ext4_map_blocks+0x569/0xea0 [ext4]
ext4_do_writepages+0x10f6/0x1bc0 [ext4]
[...]
==================================================================
The flow of issue triggering is as follows:
// Set s_mb_group_prealloc to 2147483647 via sysfs
ext4_mb_new_blocks
ext4_mb_normalize_request
ext4_mb_normalize_group_request
ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc
ext4_mb_regular_allocator
ext4_mb_choose_next_group
ext4_mb_choose_next_group_best_avail
mb_avg_fragment_size_order
order = fls(len) - 2 = 29
ext4_mb_find_good_group_avg_frag_lists
frag_list = &sbi->s_mb_avg_fragment_size[order]
if (list_empty(frag_list)) // Trigger SOOB!
At 4k block size, the length of the s_mb_avg_fragment_size list is 14,
but an oversized s_mb_group_prealloc is set, causing slab-out-of-bounds
to be triggered by an attempt to access an element at index 29.
Add a new attr_id attr_clusters_in_group with values in the range
[0, sbi->s_clusters_per_group] and declare mb_group_prealloc as
that type to fix the issue. In addition avoid returning an order
from mb_avg_fragment_size_order() greater than MB_NUM_ORDERS(sb)
and reduce some useless loops. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: bcm: rpi: Assign ->num before accessing ->hws
Commit f316cdff8d67 ("clk: Annotate struct clk_hw_onecell_data with
__counted_by") annotated the hws member of 'struct clk_hw_onecell_data'
with __counted_by, which informs the bounds sanitizer about the number
of elements in hws, so that it can warn when hws is accessed out of
bounds. As noted in that change, the __counted_by member must be
initialized with the number of elements before the first array access
happens, otherwise there will be a warning from each access prior to the
initialization because the number of elements is zero. This occurs in
raspberrypi_discover_clocks() due to ->num being assigned after ->hws
has been accessed:
UBSAN: array-index-out-of-bounds in drivers/clk/bcm/clk-raspberrypi.c:374:4
index 3 is out of range for type 'struct clk_hw *[] __counted_by(num)' (aka 'struct clk_hw *[]')
Move the ->num initialization to before the first access of ->hws, which
clears up the warning. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Use variable length array instead of fixed size
Should fix smatch warning:
ntfs_set_label() error: __builtin_memcpy() 'uni->name' too small (20 vs 256) |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: nl80211: Avoid address calculations via out of bounds array indexing
Before request->channels[] can be used, request->n_channels must be set.
Additionally, address calculations for memory after the "channels" array
need to be calculated from the allocation base ("request") rather than
via the first "out of bounds" index of "channels", otherwise run-time
bounds checking will throw a warning. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Stop parsing channels bits when all channels are found.
If a usb audio device sets more bits than the amount of channels
it could write outside of the map array. |
| In the Linux kernel, the following vulnerability has been resolved:
libbpf: Use OPTS_SET() macro in bpf_xdp_query()
When the feature_flags and xdp_zc_max_segs fields were added to the libbpf
bpf_xdp_query_opts, the code writing them did not use the OPTS_SET() macro.
This causes libbpf to write to those fields unconditionally, which means
that programs compiled against an older version of libbpf (with a smaller
size of the bpf_xdp_query_opts struct) will have its stack corrupted by
libbpf writing out of bounds.
The patch adding the feature_flags field has an early bail out if the
feature_flags field is not part of the opts struct (via the OPTS_HAS)
macro, but the patch adding xdp_zc_max_segs does not. For consistency, this
fix just changes the assignments to both fields to use the OPTS_SET()
macro. |
| In the Linux kernel, the following vulnerability has been resolved:
igc: avoid returning frame twice in XDP_REDIRECT
When a frame can not be transmitted in XDP_REDIRECT
(e.g. due to a full queue), it is necessary to free
it by calling xdp_return_frame_rx_napi.
However, this is the responsibility of the caller of
the ndo_xdp_xmit (see for example bq_xmit_all in
kernel/bpf/devmap.c) and thus calling it inside
igc_xdp_xmit (which is the ndo_xdp_xmit of the igc
driver) as well will lead to memory corruption.
In fact, bq_xmit_all expects that it can return all
frames after the last successfully transmitted one.
Therefore, break for the first not transmitted frame,
but do not call xdp_return_frame_rx_napi in igc_xdp_xmit.
This is equally implemented in other Intel drivers
such as the igb.
There are two alternatives to this that were rejected:
1. Return num_frames as all the frames would have been
transmitted and release them inside igc_xdp_xmit.
While it might work technically, it is not what
the return value is meant to represent (i.e. the
number of SUCCESSFULLY transmitted packets).
2. Rework kernel/bpf/devmap.c and all drivers to
support non-consecutively dropped packets.
Besides being complex, it likely has a negative
performance impact without a significant gain
since it is anyway unlikely that the next frame
can be transmitted if the previous one was dropped.
The memory corruption can be reproduced with
the following script which leads to a kernel panic
after a few seconds. It basically generates more
traffic than a i225 NIC can transmit and pushes it
via XDP_REDIRECT from a virtual interface to the
physical interface where frames get dropped.
#!/bin/bash
INTERFACE=enp4s0
INTERFACE_IDX=`cat /sys/class/net/$INTERFACE/ifindex`
sudo ip link add dev veth1 type veth peer name veth2
sudo ip link set up $INTERFACE
sudo ip link set up veth1
sudo ip link set up veth2
cat << EOF > redirect.bpf.c
SEC("prog")
int redirect(struct xdp_md *ctx)
{
return bpf_redirect($INTERFACE_IDX, 0);
}
char _license[] SEC("license") = "GPL";
EOF
clang -O2 -g -Wall -target bpf -c redirect.bpf.c -o redirect.bpf.o
sudo ip link set veth2 xdp obj redirect.bpf.o
cat << EOF > pass.bpf.c
SEC("prog")
int pass(struct xdp_md *ctx)
{
return XDP_PASS;
}
char _license[] SEC("license") = "GPL";
EOF
clang -O2 -g -Wall -target bpf -c pass.bpf.c -o pass.bpf.o
sudo ip link set $INTERFACE xdp obj pass.bpf.o
cat << EOF > trafgen.cfg
{
/* Ethernet Header */
0xe8, 0x6a, 0x64, 0x41, 0xbf, 0x46,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
const16(ETH_P_IP),
/* IPv4 Header */
0b01000101, 0, # IPv4 version, IHL, TOS
const16(1028), # IPv4 total length (UDP length + 20 bytes (IP header))
const16(2), # IPv4 ident
0b01000000, 0, # IPv4 flags, fragmentation off
64, # IPv4 TTL
17, # Protocol UDP
csumip(14, 33), # IPv4 checksum
/* UDP Header */
10, 0, 1, 1, # IP Src - adapt as needed
10, 0, 1, 2, # IP Dest - adapt as needed
const16(6666), # UDP Src Port
const16(6666), # UDP Dest Port
const16(1008), # UDP length (UDP header 8 bytes + payload length)
csumudp(14, 34), # UDP checksum
/* Payload */
fill('W', 1000),
}
EOF
sudo trafgen -i trafgen.cfg -b3000MB -o veth1 --cpp |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_conntrack_h323: Add protection for bmp length out of range
UBSAN load reports an exception of BRK#5515 SHIFT_ISSUE:Bitwise shifts
that are out of bounds for their data type.
vmlinux get_bitmap(b=75) + 712
<net/netfilter/nf_conntrack_h323_asn1.c:0>
vmlinux decode_seq(bs=0xFFFFFFD008037000, f=0xFFFFFFD008037018, level=134443100) + 1956
<net/netfilter/nf_conntrack_h323_asn1.c:592>
vmlinux decode_choice(base=0xFFFFFFD0080370F0, level=23843636) + 1216
<net/netfilter/nf_conntrack_h323_asn1.c:814>
vmlinux decode_seq(f=0xFFFFFFD0080371A8, level=134443500) + 812
<net/netfilter/nf_conntrack_h323_asn1.c:576>
vmlinux decode_choice(base=0xFFFFFFD008037280, level=0) + 1216
<net/netfilter/nf_conntrack_h323_asn1.c:814>
vmlinux DecodeRasMessage() + 304
<net/netfilter/nf_conntrack_h323_asn1.c:833>
vmlinux ras_help() + 684
<net/netfilter/nf_conntrack_h323_main.c:1728>
vmlinux nf_confirm() + 188
<net/netfilter/nf_conntrack_proto.c:137>
Due to abnormal data in skb->data, the extension bitmap length
exceeds 32 when decoding ras message then uses the length to make
a shift operation. It will change into negative after several loop.
UBSAN load could detect a negative shift as an undefined behaviour
and reports exception.
So we add the protection to avoid the length exceeding 32. Or else
it will return out of range error and stop decoding. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: taprio: proper TCA_TAPRIO_TC_ENTRY_INDEX check
taprio_parse_tc_entry() is not correctly checking
TCA_TAPRIO_TC_ENTRY_INDEX attribute:
int tc; // Signed value
tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
if (tc >= TC_QOPT_MAX_QUEUE) {
NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range");
return -ERANGE;
}
syzbot reported that it could fed arbitary negative values:
UBSAN: shift-out-of-bounds in net/sched/sch_taprio.c:1722:18
shift exponent -2147418108 is negative
CPU: 0 PID: 5066 Comm: syz-executor367 Not tainted 6.8.0-rc7-syzkaller-00136-gc8a5c731fd12 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2e0 lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:217 [inline]
__ubsan_handle_shift_out_of_bounds+0x3c7/0x420 lib/ubsan.c:386
taprio_parse_tc_entry net/sched/sch_taprio.c:1722 [inline]
taprio_parse_tc_entries net/sched/sch_taprio.c:1768 [inline]
taprio_change+0xb87/0x57d0 net/sched/sch_taprio.c:1877
taprio_init+0x9da/0xc80 net/sched/sch_taprio.c:2134
qdisc_create+0x9d4/0x1190 net/sched/sch_api.c:1355
tc_modify_qdisc+0xa26/0x1e40 net/sched/sch_api.c:1776
rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6617
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367
netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7f1b2dea3759
Code: 48 83 c4 28 c3 e8 d7 19 00 00 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffd4de452f8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f1b2def0390 RCX: 00007f1b2dea3759
RDX: 0000000000000000 RSI: 00000000200007c0 RDI: 0000000000000004
RBP: 0000000000000003 R08: 0000555500000000 R09: 0000555500000000
R10: 0000555500000000 R11: 0000000000000246 R12: 00007ffd4de45340
R13: 00007ffd4de45310 R14: 0000000000000001 R15: 00007ffd4de45340 |
| In the Linux kernel, the following vulnerability has been resolved:
dm-crypt: don't modify the data when using authenticated encryption
It was said that authenticated encryption could produce invalid tag when
the data that is being encrypted is modified [1]. So, fix this problem by
copying the data into the clone bio first and then encrypt them inside the
clone bio.
This may reduce performance, but it is needed to prevent the user from
corrupting the device by writing data with O_DIRECT and modifying them at
the same time.
[1] https://lore.kernel.org/all/20240207004723.GA35324@sol.localdomain/T/ |
| In the Linux kernel, the following vulnerability has been resolved:
mm/swap: fix race when skipping swapcache
When skipping swapcache for SWP_SYNCHRONOUS_IO, if two or more threads
swapin the same entry at the same time, they get different pages (A, B).
Before one thread (T0) finishes the swapin and installs page (A) to the
PTE, another thread (T1) could finish swapin of page (B), swap_free the
entry, then swap out the possibly modified page reusing the same entry.
It breaks the pte_same check in (T0) because PTE value is unchanged,
causing ABA problem. Thread (T0) will install a stalled page (A) into the
PTE and cause data corruption.
One possible callstack is like this:
CPU0 CPU1
---- ----
do_swap_page() do_swap_page() with same entry
<direct swapin path> <direct swapin path>
<alloc page A> <alloc page B>
swap_read_folio() <- read to page A swap_read_folio() <- read to page B
<slow on later locks or interrupt> <finished swapin first>
... set_pte_at()
swap_free() <- entry is free
<write to page B, now page A stalled>
<swap out page B to same swap entry>
pte_same() <- Check pass, PTE seems
unchanged, but page A
is stalled!
swap_free() <- page B content lost!
set_pte_at() <- staled page A installed!
And besides, for ZRAM, swap_free() allows the swap device to discard the
entry content, so even if page (B) is not modified, if swap_read_folio()
on CPU0 happens later than swap_free() on CPU1, it may also cause data
loss.
To fix this, reuse swapcache_prepare which will pin the swap entry using
the cache flag, and allow only one thread to swap it in, also prevent any
parallel code from putting the entry in the cache. Release the pin after
PT unlocked.
Racers just loop and wait since it's a rare and very short event. A
schedule_timeout_uninterruptible(1) call is added to avoid repeated page
faults wasting too much CPU, causing livelock or adding too much noise to
perf statistics. A similar livelock issue was described in commit
029c4628b2eb ("mm: swap: get rid of livelock in swapin readahead")
Reproducer:
This race issue can be triggered easily using a well constructed
reproducer and patched brd (with a delay in read path) [1]:
With latest 6.8 mainline, race caused data loss can be observed easily:
$ gcc -g -lpthread test-thread-swap-race.c && ./a.out
Polulating 32MB of memory region...
Keep swapping out...
Starting round 0...
Spawning 65536 workers...
32746 workers spawned, wait for done...
Round 0: Error on 0x5aa00, expected 32746, got 32743, 3 data loss!
Round 0: Error on 0x395200, expected 32746, got 32743, 3 data loss!
Round 0: Error on 0x3fd000, expected 32746, got 32737, 9 data loss!
Round 0 Failed, 15 data loss!
This reproducer spawns multiple threads sharing the same memory region
using a small swap device. Every two threads updates mapped pages one by
one in opposite direction trying to create a race, with one dedicated
thread keep swapping out the data out using madvise.
The reproducer created a reproduce rate of about once every 5 minutes, so
the race should be totally possible in production.
After this patch, I ran the reproducer for over a few hundred rounds and
no data loss observed.
Performance overhead is minimal, microbenchmark swapin 10G from 32G
zram:
Before: 10934698 us
After: 11157121 us
Cached: 13155355 us (Dropping SWP_SYNCHRONOUS_IO flag)
[kasong@tencent.com: v4] |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: virtio/akcipher - Fix stack overflow on memcpy
sizeof(struct virtio_crypto_akcipher_session_para) is less than
sizeof(struct virtio_crypto_op_ctrl_req::u), copying more bytes from
stack variable leads stack overflow. Clang reports this issue by
commands:
make -j CC=clang-14 mrproper >/dev/null 2>&1
make -j O=/tmp/crypto-build CC=clang-14 allmodconfig >/dev/null 2>&1
make -j O=/tmp/crypto-build W=1 CC=clang-14 drivers/crypto/virtio/
virtio_crypto_akcipher_algs.o |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: smartpqi: Fix disable_managed_interrupts
Correct blk-mq registration issue with module parameter
disable_managed_interrupts enabled.
When we turn off the default PCI_IRQ_AFFINITY flag, the driver needs to
register with blk-mq using blk_mq_map_queues(). The driver is currently
calling blk_mq_pci_map_queues() which results in a stack trace and possibly
undefined behavior.
Stack Trace:
[ 7.860089] scsi host2: smartpqi
[ 7.871934] WARNING: CPU: 0 PID: 238 at block/blk-mq-pci.c:52 blk_mq_pci_map_queues+0xca/0xd0
[ 7.889231] Modules linked in: sd_mod t10_pi sg uas smartpqi(+) crc32c_intel scsi_transport_sas usb_storage dm_mirror dm_region_hash dm_log dm_mod ipmi_devintf ipmi_msghandler fuse
[ 7.924755] CPU: 0 PID: 238 Comm: kworker/0:3 Not tainted 4.18.0-372.88.1.el8_6_smartpqi_test.x86_64 #1
[ 7.944336] Hardware name: HPE ProLiant DL380 Gen10/ProLiant DL380 Gen10, BIOS U30 03/08/2022
[ 7.963026] Workqueue: events work_for_cpu_fn
[ 7.978275] RIP: 0010:blk_mq_pci_map_queues+0xca/0xd0
[ 7.978278] Code: 48 89 de 89 c7 e8 f6 0f 4f 00 3b 05 c4 b7 8e 01 72 e1 5b 31 c0 5d 41 5c 41 5d 41 5e 41 5f e9 7d df 73 00 31 c0 e9 76 df 73 00 <0f> 0b eb bc 90 90 0f 1f 44 00 00 41 57 49 89 ff 41 56 41 55 41 54
[ 7.978280] RSP: 0018:ffffa95fc3707d50 EFLAGS: 00010216
[ 7.978283] RAX: 00000000ffffffff RBX: 0000000000000000 RCX: 0000000000000010
[ 7.978284] RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffff9190c32d4310
[ 7.978286] RBP: 0000000000000000 R08: ffffa95fc3707d38 R09: ffff91929b81ac00
[ 7.978287] R10: 0000000000000001 R11: ffffa95fc3707ac0 R12: 0000000000000000
[ 7.978288] R13: ffff9190c32d4000 R14: 00000000ffffffff R15: ffff9190c4c950a8
[ 7.978290] FS: 0000000000000000(0000) GS:ffff9193efc00000(0000) knlGS:0000000000000000
[ 7.978292] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 8.172814] CR2: 000055d11166c000 CR3: 00000002dae10002 CR4: 00000000007706f0
[ 8.172816] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 8.172817] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 8.172818] PKRU: 55555554
[ 8.172819] Call Trace:
[ 8.172823] blk_mq_alloc_tag_set+0x12e/0x310
[ 8.264339] scsi_add_host_with_dma.cold.9+0x30/0x245
[ 8.279302] pqi_ctrl_init+0xacf/0xc8e [smartpqi]
[ 8.294085] ? pqi_pci_probe+0x480/0x4c8 [smartpqi]
[ 8.309015] pqi_pci_probe+0x480/0x4c8 [smartpqi]
[ 8.323286] local_pci_probe+0x42/0x80
[ 8.337855] work_for_cpu_fn+0x16/0x20
[ 8.351193] process_one_work+0x1a7/0x360
[ 8.364462] ? create_worker+0x1a0/0x1a0
[ 8.379252] worker_thread+0x1ce/0x390
[ 8.392623] ? create_worker+0x1a0/0x1a0
[ 8.406295] kthread+0x10a/0x120
[ 8.418428] ? set_kthread_struct+0x50/0x50
[ 8.431532] ret_from_fork+0x1f/0x40
[ 8.444137] ---[ end trace 1bf0173d39354506 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
afs: Increase buffer size in afs_update_volume_status()
The max length of volume->vid value is 20 characters.
So increase idbuf[] size up to 24 to avoid overflow.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
[DH: Actually, it's 20 + NUL, so increase it to 24 and use snprintf()] |
| In the Linux kernel, the following vulnerability has been resolved:
arp: Prevent overflow in arp_req_get().
syzkaller reported an overflown write in arp_req_get(). [0]
When ioctl(SIOCGARP) is issued, arp_req_get() looks up an neighbour
entry and copies neigh->ha to struct arpreq.arp_ha.sa_data.
The arp_ha here is struct sockaddr, not struct sockaddr_storage, so
the sa_data buffer is just 14 bytes.
In the splat below, 2 bytes are overflown to the next int field,
arp_flags. We initialise the field just after the memcpy(), so it's
not a problem.
However, when dev->addr_len is greater than 22 (e.g. MAX_ADDR_LEN),
arp_netmask is overwritten, which could be set as htonl(0xFFFFFFFFUL)
in arp_ioctl() before calling arp_req_get().
To avoid the overflow, let's limit the max length of memcpy().
Note that commit b5f0de6df6dc ("net: dev: Convert sa_data to flexible
array in struct sockaddr") just silenced syzkaller.
[0]:
memcpy: detected field-spanning write (size 16) of single field "r->arp_ha.sa_data" at net/ipv4/arp.c:1128 (size 14)
WARNING: CPU: 0 PID: 144638 at net/ipv4/arp.c:1128 arp_req_get+0x411/0x4a0 net/ipv4/arp.c:1128
Modules linked in:
CPU: 0 PID: 144638 Comm: syz-executor.4 Not tainted 6.1.74 #31
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-debian-1.16.0-5 04/01/2014
RIP: 0010:arp_req_get+0x411/0x4a0 net/ipv4/arp.c:1128
Code: fd ff ff e8 41 42 de fb b9 0e 00 00 00 4c 89 fe 48 c7 c2 20 6d ab 87 48 c7 c7 80 6d ab 87 c6 05 25 af 72 04 01 e8 5f 8d ad fb <0f> 0b e9 6c fd ff ff e8 13 42 de fb be 03 00 00 00 4c 89 e7 e8 a6
RSP: 0018:ffffc900050b7998 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff88803a815000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff8641a44a RDI: 0000000000000001
RBP: ffffc900050b7a98 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 203a7970636d656d R12: ffff888039c54000
R13: 1ffff92000a16f37 R14: ffff88803a815084 R15: 0000000000000010
FS: 00007f172bf306c0(0000) GS:ffff88805aa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f172b3569f0 CR3: 0000000057f12005 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
arp_ioctl+0x33f/0x4b0 net/ipv4/arp.c:1261
inet_ioctl+0x314/0x3a0 net/ipv4/af_inet.c:981
sock_do_ioctl+0xdf/0x260 net/socket.c:1204
sock_ioctl+0x3ef/0x650 net/socket.c:1321
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x18e/0x220 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x37/0x90 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x64/0xce
RIP: 0033:0x7f172b262b8d
Code: 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f172bf300b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007f172b3abf80 RCX: 00007f172b262b8d
RDX: 0000000020000000 RSI: 0000000000008954 RDI: 0000000000000003
RBP: 00007f172b2d3493 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007f172b3abf80 R15: 00007f172bf10000
</TASK> |