CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
bitcoind and Bitcoin-Qt before 0.4.9rc2, 0.5.x before 0.5.8rc2, 0.6.x before 0.6.5rc2, and 0.7.x before 0.7.3rc2, and wxBitcoin, do not properly consider whether a block's size could require an excessive number of database locks, which allows remote attackers to cause a denial of service (split) and enable certain double-spending capabilities via a large block that triggers incorrect Berkeley DB locking. |
The "encrypt wallet" feature in wxBitcoin and bitcoind 0.4.x before 0.4.1, and 0.5.0rc, does not properly interact with the deletion functionality of BSDDB, which allows context-dependent attackers to obtain unencrypted private keys from Bitcoin wallet files by bypassing the BSDDB interface and reading entries that are marked for deletion. |
The HTTPAuthorized function in bitcoinrpc.cpp in bitcoind 0.8.1 provides information about authentication failure upon detecting the first incorrect byte of a password, which makes it easier for remote attackers to determine passwords via a timing side-channel attack. |
The Bitcoin protocol, as used in bitcoind before 0.4.4, wxBitcoin, Bitcoin-Qt, and other programs, does not properly handle multiple transactions with the same identifier, which allows remote attackers to cause a denial of service (unspendable transaction) by leveraging the ability to create a duplicate coinbase transaction. |
Bitcoin-Qt 0.5.0.x before 0.5.0.5; 0.5.1.x, 0.5.2.x, and 0.5.3.x before 0.5.3.1; and 0.6.x before 0.6.0rc4 on Windows does not use MinGW multithread-safe exception handling, which allows remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via crafted Bitcoin protocol messages. |
wxBitcoin and bitcoind before 0.3.5 allow remote attackers to cause a denial of service (daemon crash) via a Bitcoin transaction containing an OP_LSHIFT script opcode. |
bitcoind and Bitcoin-Qt 0.8.x before 0.8.1 do not enforce a certain block protocol rule, which allows remote attackers to bypass intended access restrictions and conduct double-spending attacks via a large block that triggers incorrect Berkeley DB locking in older product versions. |
Unspecified vulnerability in bitcoind and Bitcoin-Qt before 0.4.7rc3, 0.5.x before 0.5.6rc3, 0.6.0.x before 0.6.0.9rc1, and 0.6.x before 0.6.3rc1 allows remote attackers to cause a denial of service (process hang) via unknown behavior on a Bitcoin network. |
Unspecified vulnerability in bitcoind and Bitcoin-Qt 0.8.x allows remote attackers to cause a denial of service (memory consumption) via a large amount of tx message data. |
The Bloom Filter implementation in bitcoind and Bitcoin-Qt 0.8.x before 0.8.4rc1 allows remote attackers to cause a denial of service (divide-by-zero error and daemon crash) via a crafted sequence of messages. |
bitcoind and Bitcoin-Qt 0.8.0 and earlier allow remote attackers to cause a denial of service (electricity consumption) by mining a block to create a nonstandard Bitcoin transaction containing multiple OP_CHECKSIG script opcodes. |
Unspecified vulnerability in bitcoind and Bitcoin-Qt before 0.4.6, 0.5.x before 0.5.5, 0.6.0.x before 0.6.0.7, and 0.6.x before 0.6.2 allows remote attackers to cause a denial of service (block-processing outage and incorrect block count) via unknown behavior on a Bitcoin network. |
Unspecified vulnerability in bitcoind and Bitcoin-Qt allows attackers to cause a denial of service via unknown vectors, a different vulnerability than CVE-2012-4683. |
wxBitcoin and bitcoind 0.3.x allow remote attackers to cause a denial of service (electricity consumption) via a Bitcoin transaction containing multiple OP_CHECKSIG script opcodes. |
wxBitcoin and bitcoind before 0.3.13 do not properly handle bitcoins associated with Bitcoin transactions that have zero confirmations, which allows remote attackers to cause a denial of service (invalid-transaction flood) by sending low-valued transactions without transaction fees. |
wxBitcoin and bitcoind before 0.3.5 do not properly handle script opcodes in Bitcoin transactions, which allows remote attackers to spend bitcoins owned by other users via unspecified vectors. |
Bitcoin Core before 24.1, when debug mode is not used, allows attackers to cause a denial of service (e.g., CPU consumption) because draining the inventory-to-send queue is inefficient, as exploited in the wild in May 2023. |
In Bitcoin Core through 26.0 and Bitcoin Knots before 25.1.knots20231115, datacarrier size limits can be bypassed by obfuscating data as code (e.g., with OP_FALSE OP_IF), as exploited in the wild by Inscriptions in 2022 and 2023. NOTE: although this is a vulnerability from the perspective of the Bitcoin Knots project, some others consider it "not a bug." |
Memory management and protection issues in Bitcoin Core v22 allows attackers to modify the stored sending address within the app's memory, potentially allowing them to redirect Bitcoin transactions to wallets of their own choosing. |
Bitcoin Core before 0.19.0 might allow remote attackers to execute arbitrary code when another application unsafely passes the -platformpluginpath argument to the bitcoin-qt program, as demonstrated by an x-scheme-handler/bitcoin handler for a .desktop file or a web browser. NOTE: the discoverer states "I believe that this vulnerability cannot actually be exploited." |