CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A vulnerability in the CLI of Cisco Catalyst SD-WAN Manager, formerly Cisco SD-WAN vManage, could allow an authenticated, local attacker to overwrite arbitrary files on the local file system of an affected device. To exploit this vulnerability, the attacker must have valid read-only credentials with CLI access on the affected system.
This vulnerability is due to improper access controls on files that are on the local file system. An attacker could exploit this vulnerability by running a series of crafted commands on the local file system of an affected device. A successful exploit could allow the attacker to overwrite arbitrary files on the affected device and gain privileges of the root user. To exploit this vulnerability, an attacker would need to have CLI access as a low-privilege user. |
A vulnerability in the web UI of Cisco SD-WAN vManage Software could allow an authenticated, remote attacker to gain read and write access to information that is stored on an affected system.
The vulnerability is due to improper handling of XML External Entity (XXE) entries when parsing certain XML files. An attacker could exploit this vulnerability by persuading a user to import a crafted XML file with malicious entries. A successful exploit could allow the attacker to read and write files within the affected application.Cisco has released software updates that address this vulnerability. There are no workarounds that address this vulnerability. |
A vulnerability in the web-based management interface of Cisco Catalyst SD-WAN Manager, formerly Cisco SD-WAN vManage, could allow an authenticated, remote attacker to conduct a stored cross-site scripting attack (XSS) on an affected system.
This vulnerability is due to improper sanitization of user input to the web-based management interface. An attacker could exploit this vulnerability by submitting a malicious script through the interface. A successful exploit could allow the attacker to conduct a stored XSS attack on the affected system. |
A vulnerability in the CLI of Cisco Catalyst SD-WAN Manager, formerly Cisco SD-WAN vManage, could allow an authenticated, local attacker to gain privileges of the root user on the underlying operating system.
This vulnerability is due to insufficient input validation. An authenticated attacker with read-only privileges on the SD-WAN Manager system could exploit this vulnerability by sending a crafted request to the CLI of the SD-WAN Manager. A successful exploit could allow the attacker to gain root privileges on the underlying operating system. |
A vulnerability in the Wireless Network Control daemon (wncd) of Cisco IOS XE Software for Wireless LAN Controllers (WLCs) could allow an unauthenticated, adjacent wireless attacker to cause a denial of service (DoS) condition.
This vulnerability is due to improper memory management. An attacker could exploit this vulnerability by sending a series of IPv6 network requests from an associated wireless IPv6 client to an affected device. To associate a client to a device, an attacker may first need to authenticate to the network, or associate freely in the case of a configured open network. A successful exploit could allow the attacker to cause the wncd process to consume available memory and eventually cause the device to stop responding, resulting in a DoS condition. |
A vulnerability in the multicast DNS (mDNS) gateway feature of Cisco IOS XE Software for Wireless LAN Controllers (WLCs) could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition.
This vulnerability is due to improper management of mDNS client entries. An attacker could exploit this vulnerability by connecting to the wireless network and sending a continuous stream of specific mDNS packets. A successful exploit could allow the attacker to cause the wireless controller to have high CPU utilization, which could lead to access points (APs) losing their connection to the controller and result in a DoS condition. |
A vulnerability in the lobby ambassador web interface of Cisco IOS XE Wireless Controller Software could allow an authenticated, remote attacker to remove arbitrary users that are defined on an affected device.
This vulnerability is due to insufficient access control of actions executed by lobby ambassador users. An attacker could exploit this vulnerability by logging in to an affected device with a lobby ambassador user account and sending crafted HTTP requests to the API. A successful exploit could allow the attacker to delete arbitrary user accounts on the device, including users with administrative privileges.
Note: This vulnerability is exploitable only if the attacker obtains the credentials for a lobby ambassador account. This account is not configured by default. |
A vulnerability in the SSH server of Cisco Catalyst Center, formerly Cisco DNA Center, could allow an unauthenticated, remote attacker to impersonate a Cisco Catalyst Center appliance.
This vulnerability is due to the presence of a static SSH host key. An attacker could exploit this vulnerability by performing a machine-in-the-middle attack on SSH connections, which could allow the attacker to intercept traffic between SSH clients and a Cisco Catalyst Center appliance. A successful exploit could allow the attacker to impersonate the affected appliance, inject commands into the terminal session, and steal valid user credentials. |
Buffer overflow in Cisco Adaptive Security Appliance (ASA) Software through 9.4.2.3 on ASA 5500, ASA 5500-X, ASA Services Module, ASA 1000V, ASAv, Firepower 9300 ASA Security Module, PIX, and FWSM devices allows remote authenticated users to execute arbitrary code via crafted IPv4 SNMP packets, aka Bug ID CSCva92151 or EXTRABACON. |
A vulnerability in the Cisco Cluster Management Protocol (CMP) processing code in Cisco IOS and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause a reload of an affected device or remotely execute code with elevated privileges. The Cluster Management Protocol utilizes Telnet internally as a signaling and command protocol between cluster members. The vulnerability is due to the combination of two factors: (1) the failure to restrict the use of CMP-specific Telnet options only to internal, local communications between cluster members and instead accept and process such options over any Telnet connection to an affected device; and (2) the incorrect processing of malformed CMP-specific Telnet options. An attacker could exploit this vulnerability by sending malformed CMP-specific Telnet options while establishing a Telnet session with an affected Cisco device configured to accept Telnet connections. An exploit could allow an attacker to execute arbitrary code and obtain full control of the device or cause a reload of the affected device. This affects Catalyst switches, Embedded Service 2020 switches, Enhanced Layer 2 EtherSwitch Service Module, Enhanced Layer 2/3 EtherSwitch Service Module, Gigabit Ethernet Switch Module (CGESM) for HP, IE Industrial Ethernet switches, ME 4924-10GE switch, RF Gateway 10, and SM-X Layer 2/3 EtherSwitch Service Module. Cisco Bug IDs: CSCvd48893. |
A vulnerability in the implementation of Network Address Translation (NAT) functionality in Cisco IOS 12.4 through 15.6 could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to the improper translation of H.323 messages that use the Registration, Admission, and Status (RAS) protocol and are sent to an affected device via IPv4 packets. An attacker could exploit this vulnerability by sending a crafted H.323 RAS packet through an affected device. A successful exploit could allow the attacker to cause the affected device to crash and reload, resulting in a DoS condition. This vulnerability affects Cisco devices that are configured to use an application layer gateway with NAT (NAT ALG) for H.323 RAS messages. By default, a NAT ALG is enabled for H.323 RAS messages. Cisco Bug IDs: CSCvc57217. |
A vulnerability in the implementation of a protocol in Cisco Integrated Services Routers Generation 2 (ISR G2) Routers running Cisco IOS 15.0 through 15.6 could allow an unauthenticated, adjacent attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerability is due to a misclassification of Ethernet frames. An attacker could exploit this vulnerability by sending a crafted Ethernet frame to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. Cisco Bug IDs: CSCvc03809. |
Multiple vulnerabilities in the implementation of the Common Industrial Protocol (CIP) feature in Cisco IOS 12.4 through 15.6 could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerabilities are due to the improper parsing of crafted CIP packets destined to an affected device. An attacker could exploit these vulnerabilities by sending crafted CIP packets to be processed by an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. Cisco Bug IDs: CSCuz95334. |
Multiple vulnerabilities in the implementation of the Common Industrial Protocol (CIP) feature in Cisco IOS 12.4 through 15.6 could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerabilities are due to the improper parsing of crafted CIP packets destined to an affected device. An attacker could exploit these vulnerabilities by sending crafted CIP packets to be processed by an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. Cisco Bug IDs: CSCvc43709. |
A vulnerability in the Internet Key Exchange Version 2 (IKEv2) module of Cisco IOS 15.0 through 15.6 and Cisco IOS XE 3.5 through 16.5 could allow an unauthenticated, remote attacker to cause high CPU utilization, traceback messages, or a reload of an affected device that leads to a denial of service (DoS) condition. The vulnerability is due to how an affected device processes certain IKEv2 packets. An attacker could exploit this vulnerability by sending specific IKEv2 packets to an affected device to be processed. A successful exploit could allow the attacker to cause high CPU utilization, traceback messages, or a reload of the affected device that leads to a DoS condition. This vulnerability affects Cisco devices that have the Internet Security Association and Key Management Protocol (ISAKMP) enabled. Although only IKEv2 packets can be used to trigger this vulnerability, devices that are running Cisco IOS Software or Cisco IOS XE Software are vulnerable when ISAKMP is enabled. A device does not need to be configured with any IKEv2-specific features to be vulnerable. Many features use IKEv2, including different types of VPNs such as the following: LAN-to-LAN VPN; Remote-access VPN, excluding SSL VPN; Dynamic Multipoint VPN (DMVPN); and FlexVPN. Cisco Bug IDs: CSCvc41277. |
A vulnerability in the Virtual Private LAN Service (VPLS) code of Cisco IOS 15.0 through 15.4 for Cisco Catalyst 6800 Series Switches could allow an unauthenticated, adjacent attacker to cause a C6800-16P10G or C6800-16P10G-XL type line card to crash, resulting in a denial of service (DoS) condition. The vulnerability is due to a memory management issue in the affected software. An attacker could exploit this vulnerability by creating a large number of VPLS-generated MAC entries in the MAC address table of an affected device. A successful exploit could allow the attacker to cause a C6800-16P10G or C6800-16P10G-XL type line card to crash, resulting in a DoS condition. This vulnerability affects Cisco Catalyst 6800 Series Switches that are running a vulnerable release of Cisco IOS Software and have a Cisco C6800-16P10G or C6800-16P10G-XL line card in use with Supervisor Engine 6T. To be vulnerable, the device must also be configured with VPLS and the C6800-16P10G or C6800-16P10G-XL line card needs to be the core-facing MPLS interfaces. Cisco Bug IDs: CSCva61927. |
The DHCP relay subsystem of Cisco IOS 12.2 through 15.6 and Cisco IOS XE Software contains a vulnerability that could allow an unauthenticated, remote attacker to execute arbitrary code and gain full control of an affected system. The attacker could also cause an affected system to reload, resulting in a denial of service (DoS) condition. The vulnerability is due to a buffer overflow condition in the DHCP relay subsystem of the affected software. An attacker could exploit this vulnerability by sending a crafted DHCP Version 4 (DHCPv4) packet to an affected system. A successful exploit could allow the attacker to execute arbitrary code and gain full control of the affected system or cause the affected system to reload, resulting in a DoS condition. Cisco Bug IDs: CSCsm45390, CSCuw77959. |
A vulnerability in the Border Gateway Protocol (BGP) over an Ethernet Virtual Private Network (EVPN) for Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause the device to reload, resulting in a denial of service (DoS) condition, or potentially corrupt the BGP routing table, which could result in network instability. The vulnerability exists due to changes in the implementation of the BGP MPLS-Based Ethernet VPN RFC (RFC 7432) draft between IOS XE software releases. When the BGP Inclusive Multicast Ethernet Tag Route or BGP EVPN MAC/IP Advertisement Route update packet is received, it could be possible that the IP address length field is miscalculated. An attacker could exploit this vulnerability by sending a crafted BGP packet to an affected device after the BGP session was established. An exploit could allow the attacker to cause the affected device to reload or corrupt the BGP routing table; either outcome would result in a DoS. The vulnerability may be triggered when the router receives a crafted BGP message from a peer on an existing BGP session. This vulnerability affects all releases of Cisco IOS XE Software prior to software release 16.3 that support BGP EVPN configurations. If the device is not configured for EVPN, it is not vulnerable. Cisco Bug IDs: CSCui67191, CSCvg52875. |
A vulnerability in the crypto engine of the Cisco Integrated Services Module for VPN (ISM-VPN) running Cisco IOS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to insufficient handling of VPN traffic by the affected device. An attacker could exploit this vulnerability by sending crafted VPN traffic to an affected device. A successful exploit could allow the attacker to cause the affected device to hang or crash, resulting in a DoS condition. Cisco Bug IDs: CSCvd39267. |
A vulnerability in the Bidirectional Forwarding Detection (BFD) offload implementation of Cisco Catalyst 4500 Series Switches and Cisco Catalyst 4500-X Series Switches could allow an unauthenticated, remote attacker to cause a crash of the iosd process, causing a denial of service (DoS) condition. The vulnerability is due to insufficient error handling when the BFD header in a BFD packet is incomplete. An attacker could exploit this vulnerability by sending a crafted BFD message to or across an affected switch. A successful exploit could allow the attacker to trigger a reload of the system. This vulnerability affects Catalyst 4500 Supervisor Engine 6-E (K5), Catalyst 4500 Supervisor Engine 6L-E (K10), Catalyst 4500 Supervisor Engine 7-E (K10), Catalyst 4500 Supervisor Engine 7L-E (K10), Catalyst 4500E Supervisor Engine 8-E (K10), Catalyst 4500E Supervisor Engine 8L-E (K10), Catalyst 4500E Supervisor Engine 9-E (K10), Catalyst 4500-X Series Switches (K10), Catalyst 4900M Switch (K5), Catalyst 4948E Ethernet Switch (K5). Cisco Bug IDs: CSCvc40729. |