Filtered by vendor Redhat
Subscriptions
Filtered by product Container Native Virtualization
Subscriptions
Total
86 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2023-25173 | 2 Linuxfoundation, Redhat | 9 Containerd, Container Native Virtualization, Enterprise Linux and 6 more | 2024-11-21 | 5.3 Medium |
containerd is an open source container runtime. A bug was found in containerd prior to versions 1.6.18 and 1.5.18 where supplementary groups are not set up properly inside a container. If an attacker has direct access to a container and manipulates their supplementary group access, they may be able to use supplementary group access to bypass primary group restrictions in some cases, potentially gaining access to sensitive information or gaining the ability to execute code in that container. Downstream applications that use the containerd client library may be affected as well. This bug has been fixed in containerd v1.6.18 and v.1.5.18. Users should update to these versions and recreate containers to resolve this issue. Users who rely on a downstream application that uses containerd's client library should check that application for a separate advisory and instructions. As a workaround, ensure that the `"USER $USERNAME"` Dockerfile instruction is not used. Instead, set the container entrypoint to a value similar to `ENTRYPOINT ["su", "-", "user"]` to allow `su` to properly set up supplementary groups. | ||||
CVE-2023-25153 | 2 Linuxfoundation, Redhat | 2 Containerd, Container Native Virtualization | 2024-11-21 | 6.2 Medium |
containerd is an open source container runtime. Before versions 1.6.18 and 1.5.18, when importing an OCI image, there was no limit on the number of bytes read for certain files. A maliciously crafted image with a large file where a limit was not applied could cause a denial of service. This bug has been fixed in containerd 1.6.18 and 1.5.18. Users should update to these versions to resolve the issue. As a workaround, ensure that only trusted images are used and that only trusted users have permissions to import images. | ||||
CVE-2023-24540 | 2 Golang, Redhat | 20 Go, Acm, Advanced Cluster Security and 17 more | 2024-11-21 | 9.8 Critical |
Not all valid JavaScript whitespace characters are considered to be whitespace. Templates containing whitespace characters outside of the character set "\t\n\f\r\u0020\u2028\u2029" in JavaScript contexts that also contain actions may not be properly sanitized during execution. | ||||
CVE-2023-24538 | 2 Golang, Redhat | 21 Go, Advanced Cluster Security, Ansible Automation Platform and 18 more | 2024-11-21 | 9.8 Critical |
Templates do not properly consider backticks (`) as Javascript string delimiters, and do not escape them as expected. Backticks are used, since ES6, for JS template literals. If a template contains a Go template action within a Javascript template literal, the contents of the action can be used to terminate the literal, injecting arbitrary Javascript code into the Go template. As ES6 template literals are rather complex, and themselves can do string interpolation, the decision was made to simply disallow Go template actions from being used inside of them (e.g. "var a = {{.}}"), since there is no obviously safe way to allow this behavior. This takes the same approach as github.com/google/safehtml. With fix, Template.Parse returns an Error when it encounters templates like this, with an ErrorCode of value 12. This ErrorCode is currently unexported, but will be exported in the release of Go 1.21. Users who rely on the previous behavior can re-enable it using the GODEBUG flag jstmpllitinterp=1, with the caveat that backticks will now be escaped. This should be used with caution. | ||||
CVE-2023-24536 | 2 Golang, Redhat | 19 Go, Advanced Cluster Security, Ansible Automation Platform and 16 more | 2024-11-21 | 7.5 High |
Multipart form parsing can consume large amounts of CPU and memory when processing form inputs containing very large numbers of parts. This stems from several causes: 1. mime/multipart.Reader.ReadForm limits the total memory a parsed multipart form can consume. ReadForm can undercount the amount of memory consumed, leading it to accept larger inputs than intended. 2. Limiting total memory does not account for increased pressure on the garbage collector from large numbers of small allocations in forms with many parts. 3. ReadForm can allocate a large number of short-lived buffers, further increasing pressure on the garbage collector. The combination of these factors can permit an attacker to cause an program that parses multipart forms to consume large amounts of CPU and memory, potentially resulting in a denial of service. This affects programs that use mime/multipart.Reader.ReadForm, as well as form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue. With fix, ReadForm now does a better job of estimating the memory consumption of parsed forms, and performs many fewer short-lived allocations. In addition, the fixed mime/multipart.Reader imposes the following limits on the size of parsed forms: 1. Forms parsed with ReadForm may contain no more than 1000 parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxparts=. 2. Form parts parsed with NextPart and NextRawPart may contain no more than 10,000 header fields. In addition, forms parsed with ReadForm may contain no more than 10,000 header fields across all parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxheaders=. | ||||
CVE-2023-24534 | 2 Golang, Redhat | 22 Go, Advanced Cluster Security, Ansible Automation Platform and 19 more | 2024-11-21 | 7.5 High |
HTTP and MIME header parsing can allocate large amounts of memory, even when parsing small inputs, potentially leading to a denial of service. Certain unusual patterns of input data can cause the common function used to parse HTTP and MIME headers to allocate substantially more memory than required to hold the parsed headers. An attacker can exploit this behavior to cause an HTTP server to allocate large amounts of memory from a small request, potentially leading to memory exhaustion and a denial of service. With fix, header parsing now correctly allocates only the memory required to hold parsed headers. | ||||
CVE-2022-41725 | 2 Golang, Redhat | 19 Go, Ansible Automation Platform, Cert Manager and 16 more | 2024-11-21 | 7.5 High |
A denial of service is possible from excessive resource consumption in net/http and mime/multipart. Multipart form parsing with mime/multipart.Reader.ReadForm can consume largely unlimited amounts of memory and disk files. This also affects form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue. ReadForm takes a maxMemory parameter, and is documented as storing "up to maxMemory bytes +10MB (reserved for non-file parts) in memory". File parts which cannot be stored in memory are stored on disk in temporary files. The unconfigurable 10MB reserved for non-file parts is excessively large and can potentially open a denial of service vector on its own. However, ReadForm did not properly account for all memory consumed by a parsed form, such as map entry overhead, part names, and MIME headers, permitting a maliciously crafted form to consume well over 10MB. In addition, ReadForm contained no limit on the number of disk files created, permitting a relatively small request body to create a large number of disk temporary files. With fix, ReadForm now properly accounts for various forms of memory overhead, and should now stay within its documented limit of 10MB + maxMemory bytes of memory consumption. Users should still be aware that this limit is high and may still be hazardous. In addition, ReadForm now creates at most one on-disk temporary file, combining multiple form parts into a single temporary file. The mime/multipart.File interface type's documentation states, "If stored on disk, the File's underlying concrete type will be an *os.File.". This is no longer the case when a form contains more than one file part, due to this coalescing of parts into a single file. The previous behavior of using distinct files for each form part may be reenabled with the environment variable GODEBUG=multipartfiles=distinct. Users should be aware that multipart.ReadForm and the http.Request methods that call it do not limit the amount of disk consumed by temporary files. Callers can limit the size of form data with http.MaxBytesReader. | ||||
CVE-2022-41724 | 2 Golang, Redhat | 20 Go, Ansible Automation Platform, Cert Manager and 17 more | 2024-11-21 | 7.5 High |
Large handshake records may cause panics in crypto/tls. Both clients and servers may send large TLS handshake records which cause servers and clients, respectively, to panic when attempting to construct responses. This affects all TLS 1.3 clients, TLS 1.2 clients which explicitly enable session resumption (by setting Config.ClientSessionCache to a non-nil value), and TLS 1.3 servers which request client certificates (by setting Config.ClientAuth >= RequestClientCert). | ||||
CVE-2022-41723 | 2 Golang, Redhat | 22 Go, Hpack, Http2 and 19 more | 2024-11-21 | 7.5 High |
A maliciously crafted HTTP/2 stream could cause excessive CPU consumption in the HPACK decoder, sufficient to cause a denial of service from a small number of small requests. | ||||
CVE-2022-41717 | 3 Fedoraproject, Golang, Redhat | 25 Fedora, Go, Http2 and 22 more | 2024-11-21 | 5.3 Medium |
An attacker can cause excessive memory growth in a Go server accepting HTTP/2 requests. HTTP/2 server connections contain a cache of HTTP header keys sent by the client. While the total number of entries in this cache is capped, an attacker sending very large keys can cause the server to allocate approximately 64 MiB per open connection. | ||||
CVE-2022-41715 | 2 Golang, Redhat | 24 Go, Acm, Ceph Storage and 21 more | 2024-11-21 | 7.5 High |
Programs which compile regular expressions from untrusted sources may be vulnerable to memory exhaustion or denial of service. The parsed regexp representation is linear in the size of the input, but in some cases the constant factor can be as high as 40,000, making relatively small regexps consume much larger amounts of memory. After fix, each regexp being parsed is limited to a 256 MB memory footprint. Regular expressions whose representation would use more space than that are rejected. Normal use of regular expressions is unaffected. | ||||
CVE-2022-32190 | 2 Golang, Redhat | 10 Go, Ceph Storage, Container Native Virtualization and 7 more | 2024-11-21 | 7.5 High |
JoinPath and URL.JoinPath do not remove ../ path elements appended to a relative path. For example, JoinPath("https://go.dev", "../go") returns the URL "https://go.dev/../go", despite the JoinPath documentation stating that ../ path elements are removed from the result. | ||||
CVE-2022-32189 | 2 Golang, Redhat | 13 Go, Ceph Storage, Container Native Virtualization and 10 more | 2024-11-21 | 7.5 High |
A too-short encoded message can cause a panic in Float.GobDecode and Rat GobDecode in math/big in Go before 1.17.13 and 1.18.5, potentially allowing a denial of service. | ||||
CVE-2022-32149 | 2 Golang, Redhat | 10 Text, Acm, Container Native Virtualization and 7 more | 2024-11-21 | 7.5 High |
An attacker may cause a denial of service by crafting an Accept-Language header which ParseAcceptLanguage will take significant time to parse. | ||||
CVE-2022-32148 | 2 Golang, Redhat | 19 Go, Acm, Application Interconnect and 16 more | 2024-11-21 | 6.5 Medium |
Improper exposure of client IP addresses in net/http before Go 1.17.12 and Go 1.18.4 can be triggered by calling httputil.ReverseProxy.ServeHTTP with a Request.Header map containing a nil value for the X-Forwarded-For header, which causes ReverseProxy to set the client IP as the value of the X-Forwarded-For header. | ||||
CVE-2022-30635 | 2 Golang, Redhat | 15 Go, Acm, Ceph Storage and 12 more | 2024-11-21 | 7.5 High |
Uncontrolled recursion in Decoder.Decode in encoding/gob before Go 1.17.12 and Go 1.18.4 allows an attacker to cause a panic due to stack exhaustion via a message which contains deeply nested structures. | ||||
CVE-2022-30633 | 2 Golang, Redhat | 14 Go, Acm, Application Interconnect and 11 more | 2024-11-21 | 7.5 High |
Uncontrolled recursion in Unmarshal in encoding/xml before Go 1.17.12 and Go 1.18.4 allows an attacker to cause a panic due to stack exhaustion via unmarshalling an XML document into a Go struct which has a nested field that uses the 'any' field tag. | ||||
CVE-2022-30632 | 2 Golang, Redhat | 18 Go, Acm, Application Interconnect and 15 more | 2024-11-21 | 7.5 High |
Uncontrolled recursion in Glob in path/filepath before Go 1.17.12 and Go 1.18.4 allows an attacker to cause a panic due to stack exhaustion via a path containing a large number of path separators. | ||||
CVE-2022-30631 | 2 Golang, Redhat | 21 Go, Acm, Advanced Cluster Security and 18 more | 2024-11-21 | 7.5 High |
Uncontrolled recursion in Reader.Read in compress/gzip before Go 1.17.12 and Go 1.18.4 allows an attacker to cause a panic due to stack exhaustion via an archive containing a large number of concatenated 0-length compressed files. | ||||
CVE-2022-30630 | 2 Golang, Redhat | 17 Go, Acm, Application Interconnect and 14 more | 2024-11-21 | 7.5 High |
Uncontrolled recursion in Glob in io/fs before Go 1.17.12 and Go 1.18.4 allows an attacker to cause a panic due to stack exhaustion via a path which contains a large number of path separators. |