Filtered by vendor Mcafee
Subscriptions
Filtered by product Epolicy Orchestrator
Subscriptions
Total
86 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2020-2773 | 8 Canonical, Debian, Fedoraproject and 5 more | 24 Ubuntu Linux, Debian Linux, Fedora and 21 more | 2024-09-30 | 3.7 Low |
Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Security). Supported versions that are affected are Java SE: 7u251, 8u241, 11.0.6 and 14; Java SE Embedded: 8u241. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L). | ||||
CVE-2020-2604 | 7 Canonical, Debian, Mcafee and 4 more | 30 Ubuntu Linux, Debian Linux, Epolicy Orchestrator and 27 more | 2024-09-30 | 8.1 High |
Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Serialization). Supported versions that are affected are Java SE: 7u241, 8u231, 11.0.5 and 13.0.1; Java SE Embedded: 8u231. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS v3.0 Base Score 8.1 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H). | ||||
CVE-2020-14578 | 8 Canonical, Debian, Fedoraproject and 5 more | 24 Ubuntu Linux, Debian Linux, Fedora and 21 more | 2024-09-27 | 3.7 Low |
Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Libraries). Supported versions that are affected are Java SE: 7u261 and 8u251; Java SE Embedded: 8u251. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.1 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L). | ||||
CVE-2020-14579 | 8 Canonical, Debian, Fedoraproject and 5 more | 24 Ubuntu Linux, Debian Linux, Fedora and 21 more | 2024-09-27 | 3.7 Low |
Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Libraries). Supported versions that are affected are Java SE: 7u261 and 8u251; Java SE Embedded: 8u251. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.1 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L). | ||||
CVE-2020-14581 | 7 Canonical, Debian, Fedoraproject and 4 more | 20 Ubuntu Linux, Debian Linux, Fedora and 17 more | 2024-09-27 | 3.7 Low |
Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: 2D). Supported versions that are affected are Java SE: 8u251, 11.0.7 and 14.0.1; Java SE Embedded: 8u251. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Java SE, Java SE Embedded accessible data. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.1 Base Score 3.7 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N). | ||||
CVE-2020-14621 | 8 Canonical, Debian, Fedoraproject and 5 more | 26 Ubuntu Linux, Debian Linux, Fedora and 23 more | 2024-09-27 | 5.3 Medium |
Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: JAXP). Supported versions that are affected are Java SE: 7u261, 8u251, 11.0.7 and 14.0.1; Java SE Embedded: 8u251. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE, Java SE Embedded accessible data. Note: This vulnerability can only be exploited by supplying data to APIs in the specified Component without using Untrusted Java Web Start applications or Untrusted Java applets, such as through a web service. CVSS 3.1 Base Score 5.3 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N). | ||||
CVE-2020-14782 | 6 Debian, Mcafee, Netapp and 3 more | 19 Debian Linux, Epolicy Orchestrator, Active Iq Unified Manager and 16 more | 2024-09-26 | 3.7 Low |
Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Libraries). Supported versions that are affected are Java SE: 7u271, 8u261, 11.0.8 and 15; Java SE Embedded: 8u261. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE, Java SE Embedded accessible data. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.1 Base Score 3.7 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N). | ||||
CVE-2020-14792 | 6 Debian, Mcafee, Netapp and 3 more | 21 Debian Linux, Epolicy Orchestrator, 7-mode Transition Tool and 18 more | 2024-09-26 | 4.2 Medium |
Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Java SE: 7u271, 8u261, 11.0.8 and 15; Java SE Embedded: 8u261. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE, Java SE Embedded accessible data as well as unauthorized read access to a subset of Java SE, Java SE Embedded accessible data. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.1 Base Score 4.2 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:N). | ||||
CVE-2021-2161 | 6 Debian, Fedoraproject, Mcafee and 3 more | 13 Debian Linux, Fedora, Epolicy Orchestrator and 10 more | 2024-09-26 | 5.9 Medium |
Vulnerability in the Java SE, Java SE Embedded, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Libraries). Supported versions that are affected are Java SE: 7u291, 8u281, 11.0.10, 16; Java SE Embedded: 8u281; Oracle GraalVM Enterprise Edition: 19.3.5, 20.3.1.2 and 21.0.0.2. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Java SE, Java SE Embedded, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability applies to Java deployments that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. It can also be exploited by supplying untrusted data to APIs in the specified Component. CVSS 3.1 Base Score 5.9 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:H/A:N). | ||||
CVE-2021-2432 | 3 Mcafee, Oracle, Redhat | 3 Epolicy Orchestrator, Jdk, Rhel Extras | 2024-09-25 | 3.7 Low |
Vulnerability in the Java SE product of Oracle Java SE (component: JNDI). The supported version that is affected is Java SE: 7u301. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L). | ||||
CVE-2021-23840 | 8 Debian, Fujitsu, Mcafee and 5 more | 31 Debian Linux, M10-1, M10-1 Firmware and 28 more | 2024-09-17 | 7.5 High |
Calls to EVP_CipherUpdate, EVP_EncryptUpdate and EVP_DecryptUpdate may overflow the output length argument in some cases where the input length is close to the maximum permissable length for an integer on the platform. In such cases the return value from the function call will be 1 (indicating success), but the output length value will be negative. This could cause applications to behave incorrectly or crash. OpenSSL versions 1.1.1i and below are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1j. OpenSSL versions 1.0.2x and below are affected by this issue. However OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.1.1j (Affected 1.1.1-1.1.1i). Fixed in OpenSSL 1.0.2y (Affected 1.0.2-1.0.2x). | ||||
CVE-2015-8765 | 1 Mcafee | 1 Epolicy Orchestrator | 2024-09-17 | N/A |
Intel McAfee ePolicy Orchestrator (ePO) 4.6.9 and earlier, 5.0.x, 5.1.x before 5.1.3 Hotfix 1106041, and 5.3.x before 5.3.1 Hotfix 1106041 allow remote attackers to execute arbitrary code via a crafted serialized Java object, related to the Apache Commons Collections (ACC) library. | ||||
CVE-2018-6660 | 1 Mcafee | 1 Epolicy Orchestrator | 2024-09-16 | N/A |
Directory Traversal vulnerability in McAfee ePolicy Orchestrator (ePO) 5.3.2, 5.3.1, 5.3.0 and 5.9.0 allows administrators to use Windows alternate data streams, which could be used to bypass the file extensions, via not properly validating the path when exporting a particular XML file. | ||||
CVE-2021-3712 | 8 Debian, Mcafee, Netapp and 5 more | 36 Debian Linux, Epolicy Orchestrator, Clustered Data Ontap and 33 more | 2024-09-16 | 7.4 High |
ASN.1 strings are represented internally within OpenSSL as an ASN1_STRING structure which contains a buffer holding the string data and a field holding the buffer length. This contrasts with normal C strings which are repesented as a buffer for the string data which is terminated with a NUL (0) byte. Although not a strict requirement, ASN.1 strings that are parsed using OpenSSL's own "d2i" functions (and other similar parsing functions) as well as any string whose value has been set with the ASN1_STRING_set() function will additionally NUL terminate the byte array in the ASN1_STRING structure. However, it is possible for applications to directly construct valid ASN1_STRING structures which do not NUL terminate the byte array by directly setting the "data" and "length" fields in the ASN1_STRING array. This can also happen by using the ASN1_STRING_set0() function. Numerous OpenSSL functions that print ASN.1 data have been found to assume that the ASN1_STRING byte array will be NUL terminated, even though this is not guaranteed for strings that have been directly constructed. Where an application requests an ASN.1 structure to be printed, and where that ASN.1 structure contains ASN1_STRINGs that have been directly constructed by the application without NUL terminating the "data" field, then a read buffer overrun can occur. The same thing can also occur during name constraints processing of certificates (for example if a certificate has been directly constructed by the application instead of loading it via the OpenSSL parsing functions, and the certificate contains non NUL terminated ASN1_STRING structures). It can also occur in the X509_get1_email(), X509_REQ_get1_email() and X509_get1_ocsp() functions. If a malicious actor can cause an application to directly construct an ASN1_STRING and then process it through one of the affected OpenSSL functions then this issue could be hit. This might result in a crash (causing a Denial of Service attack). It could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext). Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). Fixed in OpenSSL 1.0.2za (Affected 1.0.2-1.0.2y). | ||||
CVE-2018-6659 | 1 Mcafee | 1 Epolicy Orchestrator | 2024-09-16 | N/A |
Reflected Cross-Site Scripting vulnerability in McAfee ePolicy Orchestrator (ePO) 5.3.2, 5.3.1, 5.3.0 and 5.9.0 allows remote authenticated users to exploit an XSS issue via not sanitizing the user input. | ||||
CVE-2002-0690 | 1 Mcafee | 1 Epolicy Orchestrator | 2024-08-08 | N/A |
Format string vulnerability in McAfee Security ePolicy Orchestrator (ePO) 2.5.1 allows remote attackers to execute arbitrary code via an HTTP GET request with a URI containing format strings. | ||||
CVE-2003-0616 | 1 Mcafee | 1 Epolicy Orchestrator | 2024-08-08 | N/A |
Format string vulnerability in ePO service for McAfee ePolicy Orchestrator 2.0, 2.5, and 2.5.1 allows remote attackers to execute arbitrary code via a POST request with format strings in the computerlist parameter, which are used when logging a failed name resolution. | ||||
CVE-2003-0610 | 1 Mcafee | 1 Epolicy Orchestrator | 2024-08-08 | N/A |
Directory traversal vulnerability in ePO agent for McAfee ePolicy Orchestrator 3.0 allows remote attackers to read arbitrary files via a certain HTTP request. | ||||
CVE-2003-0148 | 1 Mcafee | 1 Epolicy Orchestrator | 2024-08-08 | N/A |
The default installation of MSDE via McAfee ePolicy Orchestrator 2.0 through 3.0 allows attackers to execute arbitrary code via a series of steps that (1) obtain the database administrator username and encrypted password in a configuration file from the ePO server using a certain request, (2) crack the password due to weak cryptography, and (3) use the password to pass commands through xp_cmdshell. | ||||
CVE-2003-0149 | 1 Mcafee | 1 Epolicy Orchestrator | 2024-08-08 | N/A |
Heap-based buffer overflow in ePO agent for McAfee ePolicy Orchestrator 2.0, 2.5, and 2.5.1 allows remote attackers to execute arbitrary code via a POST request containing long parameters. |