| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A session fixation issue was discovered in the SAML adapters provided by Keycloak. The session ID and JSESSIONID cookie are not changed at login time, even when the turnOffChangeSessionIdOnLogin option is configured. This flaw allows an attacker who hijacks the current session before authentication to trigger session fixation. |
| A vulnerability was found in the Keycloak Server. The Keycloak Server is vulnerable to a denial of service (DoS) attack due to improper handling of proxy headers. When Keycloak is configured to accept incoming proxy headers, it may accept non-IP values, such as obfuscated identifiers, without proper validation. This issue can lead to costly DNS resolution operations, which an attacker could exploit to tie up IO threads and potentially cause a denial of service.
The attacker must have access to send requests to a Keycloak instance that is configured to accept proxy headers, specifically when reverse proxies do not overwrite incoming headers, and Keycloak is configured to trust these headers. |
| A security flaw exists in WildFly and JBoss Enterprise Application Platform (EAP) within the Enterprise JavaBeans (EJB) remote invocation mechanism. This vulnerability stems from untrusted data deserialization handled by JBoss Marshalling. This flaw allows an attacker to send a specially crafted serialized object, leading to remote code execution without requiring authentication. |
| A vulnerability was found in Keycloak. A user with high privileges could read sensitive information from a Vault file that is not within the expected context. This attacker must have previous high access to the Keycloak server in order to perform resource creation, for example, an LDAP provider configuration and set up a Vault read file, which will only inform whether that file exists or not. |
| A vulnerability was found in Wildfly’s management interface. Due to the lack of limitation of sockets for the management interface, it may be possible to cause a denial of service hitting the nofile limit as there is no possibility to configure or set a maximum number of connections. |
| A flaw was found in the redirect_uri validation logic in Keycloak. This issue may allow a bypass of otherwise explicitly allowed hosts. A successful attack may lead to an access token being stolen, making it possible for the attacker to impersonate other users. |
| A flaw was found in Quarkus-HTTP, which incorrectly parses cookies with
certain value-delimiting characters in incoming requests. This issue could
allow an attacker to construct a cookie value to exfiltrate HttpOnly cookie
values or spoof arbitrary additional cookie values, leading to unauthorized
data access or modification. The main threat from this flaw impacts data
confidentiality and integrity. |
| A flaw was found in Keycloak. This issue occurs because sensitive runtime values, such as passwords, may be captured during the Keycloak build process and embedded as default values in bytecode, leading to unintended information disclosure. In Keycloak 26, sensitive data specified directly in environment variables during the build process is also stored as a default values, making it accessible during runtime. Indirect usage of environment variables for SPI options and Quarkus properties is also vulnerable due to unconditional expansion by PropertyMapper logic, capturing sensitive data as default values in all Keycloak versions up to 26.0.2. |
| A vulnerability was found in the Keycloak-services package. If untrusted data is passed to the SearchQueryUtils method, it could lead to a denial of service (DoS) scenario by exhausting system resources due to a Regex complexity. |
| A vulnerability was found in OIDC-Client. When using the RH SSO OIDC adapter with EAP 7.x or when using the elytron-oidc-client subsystem with EAP 8.x, authorization code injection attacks can occur, allowing an attacker to inject a stolen authorization code into the attacker's own session with the client with a victim's identity. This is usually done with a Man-in-the-Middle (MitM) or phishing attack. |
| A vulnerability was found in Wildfly, where a user may perform Cross-site scripting in the Wildfly deployment system. This flaw allows an attacker or insider to execute a deployment with a malicious payload, which could trigger undesired behavior against the server. |
| A misconfiguration flaw was found in Keycloak. This issue can allow an attacker to redirect users to an arbitrary URL if a 'Valid Redirect URI' is set to http://localhost or http://127.0.0.1, enabling sensitive information such as authorization codes to be exposed to the attacker, potentially leading to session hijacking. |
| A vulnerability was found in jberet-core logging. An exception in 'dbProperties' might display user credentials such as the username and password for the database-connection. |
| A path traversal vulnerability was found in Undertow. This issue may allow a remote attacker to append a specially-crafted sequence to an HTTP request for an application deployed to JBoss EAP, which may permit access to privileged or restricted files and directories. |
| A security issue was discovered in the LRA Coordinator component of Narayana. When Cancel is called in LRA, an execution time of approximately 2 seconds occurs. If Join is called with the same LRA ID within that timeframe, the application may crash or hang indefinitely, leading to a denial of service. |
| A flaw was found in the Keycloak identity and access management system when Fine-Grained Admin Permissions(FGAPv2) are enabled. An administrative user with the manage-users role can escalate their privileges to realm-admin due to improper privilege enforcement. This vulnerability allows unauthorized elevation of access rights, compromising the intended separation of administrative duties and posing a security risk to the realm. |
| A vulnerability was found in Undertow where the ProxyProtocolReadListener reuses the same StringBuilder instance across multiple requests. This issue occurs when the parseProxyProtocolV1 method processes multiple requests on the same HTTP connection. As a result, different requests may share the same StringBuilder instance, potentially leading to information leakage between requests or responses. In some cases, a value from a previous request or response may be erroneously reused, which could lead to unintended data exposure. This issue primarily results in errors and connection termination but creates a risk of data leakage in multi-request environments. |
| A vulnerability was found in Undertow, where URL-encoded request paths can be mishandled during concurrent requests on the AJP listener. This issue arises because the same buffer is used to decode the paths for multiple requests simultaneously, leading to incorrect path information being processed. As a result, the server may attempt to access the wrong path, causing errors such as "404 Not Found" or other application failures. This flaw can potentially lead to a denial of service, as legitimate resources become inaccessible due to the path mix-up. |
| A vulnerability was found in Undertow, where the chunked response hangs after the body was flushed. The response headers and body were sent but the client would continue waiting as Undertow does not send the expected 0\r\n termination of the chunked response. This results in uncontrolled resource consumption, leaving the server side to a denial of service attack. This happens only with Java 17 TLSv1.3 scenarios. |
| A vulnerability was found in Undertow. This vulnerability impacts a server that supports the wildfly-http-client protocol. Whenever a malicious user opens and closes a connection with the HTTP port of the server and then closes the connection immediately, the server will end with both memory and open file limits exhausted at some point, depending on the amount of memory available.
At HTTP upgrade to remoting, the WriteTimeoutStreamSinkConduit leaks connections if RemotingConnection is closed by Remoting ServerConnectionOpenListener. Because the remoting connection originates in Undertow as part of the HTTP upgrade, there is an external layer to the remoting connection. This connection is unaware of the outermost layer when closing the connection during the connection opening procedure. Hence, the Undertow WriteTimeoutStreamSinkConduit is not notified of the closed connection in this scenario. Because WriteTimeoutStreamSinkConduit creates a timeout task, the whole dependency tree leaks via that task, which is added to XNIO WorkerThread. So, the workerThread points to the Undertow conduit, which contains the connections and causes the leak. |