Search Results (73 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2017-2784 1 Arm 1 Mbed Tls 2025-04-20 N/A
An exploitable free of a stack pointer vulnerability exists in the x509 certificate parsing code of ARM mbed TLS before 1.3.19, 2.x before 2.1.7, and 2.4.x before 2.4.2. A specially crafted x509 certificate, when parsed by mbed TLS library, can cause an invalid free of a stack pointer leading to a potential remote code execution. In order to exploit this vulnerability, an attacker can act as either a client or a server on a network to deliver malicious x509 certificates to vulnerable applications.
CVE-2021-27435 1 Arm 1 Mbed 2025-04-16 7.3 High
ARM mbed product Version 6.3.0 is vulnerable to integer wrap-around in malloc_wrapper function, which can lead to arbitrary memory allocation, resulting in unexpected behavior such as a crash or a remote code injection/execution.
CVE-2021-27433 1 Arm 1 Mbed Ualloc 2025-04-16 7.3 High
ARM mbed-ualloc memory library version 1.3.0 is vulnerable to integer wrap-around in function mbed_krbs, which can lead to arbitrary memory allocation, resulting in unexpected behavior such as a crash or a remote code injection/execution.
CVE-2015-8036 5 Arm, Debian, Fedoraproject and 2 more 5 Mbed Tls, Debian Linux, Fedora and 2 more 2025-04-12 N/A
Heap-based buffer overflow in ARM mbed TLS (formerly PolarSSL) 1.3.x before 1.3.14 and 2.x before 2.1.2 allows remote SSL servers to cause a denial of service (client crash) and possibly execute arbitrary code via a long session ticket name to the session ticket extension, which is not properly handled when creating a ClientHello message to resume a session. NOTE: this identifier was SPLIT from CVE-2015-5291 per ADT3 due to different affected version ranges.
CVE-2015-5291 5 Arm, Debian, Fedoraproject and 2 more 6 Mbed Tls, Debian Linux, Fedora and 3 more 2025-04-12 N/A
Heap-based buffer overflow in PolarSSL 1.x before 1.2.17 and ARM mbed TLS (formerly PolarSSL) 1.3.x before 1.3.14 and 2.x before 2.1.2 allows remote SSL servers to cause a denial of service (client crash) and possibly execute arbitrary code via a long hostname to the server name indication (SNI) extension, which is not properly handled when creating a ClientHello message. NOTE: this identifier has been SPLIT per ADT3 due to different affected version ranges. See CVE-2015-8036 for the session ticket issue that was introduced in 1.3.0.
CVE-2021-36647 1 Arm 1 Mbed Tls 2025-04-08 4.7 Medium
Use of a Broken or Risky Cryptographic Algorithm in the function mbedtls_mpi_exp_mod() in lignum.c in Mbed TLS Mbed TLS all versions before 3.0.0, 2.27.0 or 2.16.11 allows attackers with access to precise enough timing and memory access information (typically an untrusted operating system attacking a secure enclave such as SGX or the TrustZone secure world) to recover the private keys used in RSA.
CVE-2024-45157 1 Arm 1 Mbed Tls 2025-03-14 5.1 Medium
An issue was discovered in Mbed TLS before 2.28.9 and 3.x before 3.6.1, in which the user-selected algorithm is not used. Unlike previously documented, enabling MBEDTLS_PSA_HMAC_DRBG_MD_TYPE does not cause the PSA subsystem to use HMAC_DRBG: it uses HMAC_DRBG only when MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG and MBEDTLS_CTR_DRBG_C are disabled.
CVE-2024-45159 1 Arm 1 Mbed Tls 2025-03-13 9.8 Critical
An issue was discovered in Mbed TLS 3.x before 3.6.1. With TLS 1.3, when a server enables optional authentication of the client, if the client-provided certificate does not have appropriate values in if keyUsage or extKeyUsage extensions, then the return value of mbedtls_ssl_get_verify_result() would incorrectly have the MBEDTLS_X509_BADCERT_KEY_USAGE and MBEDTLS_X509_BADCERT_KEY_USAGE bits clear. As a result, an attacker that had a certificate valid for uses other than TLS client authentication would nonetheless be able to use it for TLS client authentication. Only TLS 1.3 servers were affected, and only with optional authentication (with required authentication, the handshake would be aborted with a fatal alert).
CVE-2022-43701 1 Arm 11 Arm Compiler, Arm Compiler For Embedded Fusa, Arm Compiler For Functional Safety and 8 more 2025-02-13 7.8 High
When the installation directory does not have sufficiently restrictive file permissions, an attacker can modify files in the installation directory to cause execution of malicious code.
CVE-2024-48986 2 Arm, Mbed 2 Mbed, Mbed 2024-11-26 7.5 High
An issue was discovered in MBed OS 6.16.0. Its hci parsing software dynamically determines the length of certain hci packets by reading a byte from its header. Certain events cause a callback, the logic for which allocates a buffer (the length of which is determined by looking up the event type in a table). The subsequent write operation, however, copies the amount of data specified in the packet header, which may lead to a buffer overflow. This bug is trivial to exploit for a denial of service but is not certain to suffice to bring the system down and can generally not be exploited further because the exploitable buffer is dynamically allocated.
CVE-2024-48985 2 Arm, Mbed 2 Mbed, Mbed 2024-11-25 7.5 High
An issue was discovered in MBed OS 6.16.0. During processing of HCI packets, the software dynamically determines the length of the packet data by reading 2 bytes from the packet data. A buffer is then allocated to contain the entire packet, the size of which is calculated as the length of the packet body determined earlier and the header length. If the allocate fails because the specified packet is too large, no exception handling occurs and hciTrSerialRxIncoming continues to write bytes into the 4-byte large temporary header buffer, leading to a buffer overflow. This can be leveraged into an arbitrary write by an attacker. It is possible to overwrite the pointer to the buffer that is supposed to receive the contents of the packet body but which couldn't be allocated. One can then overwrite the state variable used by the function to determine which step of the parsing process is currently being executed. This advances the function to the next state, where it proceeds to copy data to that arbitrary location. The packet body is then written wherever the corrupted data pointer is pointing.
CVE-2024-48981 2 Arm, Mbed 2 Mbed, Mbed 2024-11-25 7.5 High
An issue was discovered in MBed OS 6.16.0. During processing of HCI packets, the software dynamically determines the length of the packet header by looking up the identifying first byte and matching it against a table of possible lengths. The initial parsing function, hciTrSerialRxIncoming does not drop packets with invalid identifiers but also does not set a safe default for the length of unknown packets' headers, leading to a buffer overflow. This can be leveraged into an arbitrary write by an attacker. It is possible to overwrite the pointer to a not-yet-allocated buffer that is supposed to receive the contents of the packet body. One can then overwrite the state variable used by the function to determine which state of packet parsing is currently occurring. Because the buffer is allocated when the last byte of the header has been copied, the combination of having a bad header length variable that will never match the counter variable and being able to overwrite the state variable with the resulting buffer overflow can be used to advance the function to the next step while skipping the buffer allocation and resulting pointer write. The next 16 bytes from the packet body are then written wherever the corrupted data pointer is pointing.
CVE-2024-48983 2 Arm, Mbed 2 Mbed, Mbed 2024-11-25 7.5 High
An issue was discovered in MBed OS 6.16.0. During processing of HCI packets, the software dynamically determines the length of the packet data by reading 2 bytes from the packet header. A buffer is then allocated to contain the entire packet, the size of which is calculated as the length of the packet body determined earlier plus the header length. WsfMsgAlloc then increments this again by sizeof(wsfMsg_t). This may cause an integer overflow that results in the buffer being significantly too small to contain the entire packet. This may cause a buffer overflow of up to 65 KB . This bug is trivial to exploit for a denial of service but can generally not be exploited further because the exploitable buffer is dynamically allocated.
CVE-2024-48982 2 Arm, Mbed 2 Mbed, Mbed 2024-11-25 7.5 High
An issue was discovered in MBed OS 6.16.0. Its hci parsing software dynamically determines the length of certain hci packets by reading a byte from its header. This value is assumed to be greater than or equal to 3, but the software doesn't ensure that this is the case. Supplying a length less than 3 leads to a buffer overflow in a buffer that is allocated later. It is simultaneously possible to cause another integer overflow by supplying large length values because the provided length value is increased by a few bytes to account for additional information that is supposed to be stored there. This bug is trivial to exploit for a denial of service but is not certain to suffice to bring the system down and can generally not be exploited further because the exploitable buffer is dynamically allocated.
CVE-2024-22905 1 Arm 1 Mbed-os 2024-11-21 7.0 High
Buffer Overflow vulnerability in ARM mbed-os v.6.17.0 allows a remote attacker to execute arbitrary code via a crafted script to the hciTrSerialRxIncoming function.
CVE-2023-45199 2 Arm, Mbed 2 Mbed Tls, Mbedtls 2024-11-21 9.8 Critical
Mbed TLS 3.2.x through 3.4.x before 3.5 has a Buffer Overflow that can lead to remote Code execution.
CVE-2023-43615 3 Arm, Fedoraproject, Mbed 3 Mbed Tls, Fedora, Mbedtls 2024-11-21 7.5 High
Mbed TLS 2.x before 2.28.5 and 3.x before 3.5.0 has a Buffer Overflow.
CVE-2022-35409 2 Arm, Debian 2 Mbed Tls, Debian Linux 2024-11-21 9.1 Critical
An issue was discovered in Mbed TLS before 2.28.1 and 3.x before 3.2.0. In some configurations, an unauthenticated attacker can send an invalid ClientHello message to a DTLS server that causes a heap-based buffer over-read of up to 255 bytes. This can cause a server crash or possibly information disclosure based on error responses. Affected configurations have MBEDTLS_SSL_DTLS_CLIENT_PORT_REUSE enabled and MBEDTLS_SSL_IN_CONTENT_LEN less than a threshold that depends on the configuration: 258 bytes if using mbedtls_ssl_cookie_check, and possibly up to 571 bytes with a custom cookie check function.
CVE-2021-45451 2 Arm, Fedoraproject 2 Mbed Tls, Fedora 2024-11-21 7.5 High
In Mbed TLS before 3.1.0, psa_aead_generate_nonce allows policy bypass or oracle-based decryption when the output buffer is at memory locations accessible to an untrusted application.
CVE-2021-45450 2 Arm, Fedoraproject 2 Mbed Tls, Fedora 2024-11-21 7.5 High
In Mbed TLS before 2.28.0 and 3.x before 3.1.0, psa_cipher_generate_iv and psa_cipher_encrypt allow policy bypass or oracle-based decryption when the output buffer is at memory locations accessible to an untrusted application.