CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Insufficient checks in System Management Unit (SMU) FeatureConfig may result in reenabling features potentially resulting in denial of resources and/or denial of service. |
Insufficient General Purpose IO (GPIO) bounds check in System Management Unit (SMU) may result in access/updates from/to invalid address space that could result in denial of service. |
Insufficient bound checks in the System Management Unit (SMU) may result in a system voltage malfunction that could result in denial of resources and/or possibly denial of service. |
A malicious or compromised UApp or ABL may be used by an attacker to send a malformed system call to the bootloader, resulting in out-of-bounds memory accesses. |
Insufficient check of the process type in Trusted OS (TOS) may allow an attacker with privileges to enable a lesser privileged process to unmap memory owned by a higher privileged process resulting in a denial of service. |
An attacker, who gained elevated privileges via some other vulnerability, may be able to read data from Boot ROM resulting in a loss of system integrity. |
Insufficient bound checks in System Management Unit (SMU) PCIe Hot Plug table may result in access/updates from/to invalid address space that could result in denial of service. |
Insufficient DRAM address validation in System Management Unit (SMU) may result in a DMA (Direct Memory Access) read/write from/to invalid DRAM address that could result in denial of service. |
Some AMD CPUs may transiently execute beyond unconditional direct branches, which may potentially result in data leakage. |
Insufficient DRAM address validation in System Management Unit (SMU) may result in a DMA read from invalid DRAM address to SRAM resulting in SMU not servicing further requests. |
Insufficient bounds checking in System Management Unit (SMU) may cause invalid memory accesses/updates that could result in SMU hang and subsequent failure to service any further requests from other components. |
Failure to verify the protocol in SMM may allow an attacker to control the protocol and modify SPI flash resulting in a potential arbitrary code execution. |
Potential floating point value injection in all supported CPU products, in conjunction with software vulnerabilities relating to speculative execution with incorrect floating point results, may cause the use of incorrect data from FPVI and may result in data leakage. |
Potential speculative code store bypass in all supported CPU products, in conjunction with software vulnerabilities relating to speculative execution of overwritten instructions, may cause an incorrect speculation and could result in data leakage. |
When combined with specific software sequences, AMD CPUs may transiently execute non-canonical loads and store using only the lower 48 address bits potentially resulting in data leakage. |