CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Directory traversal vulnerability in Sync In server thru 1.1.1 allowing authenticated attackers to gain read and write access to the system via FilesManager.saveMultipart function in backend/src/applications/files/services/files-manager.service.ts, and FilesManager.compress function in backend/src/applications/files/services/files-manager.service.ts. |
CMSEasy v7.7.8.0 and before is vulnerable to Arbitrary file deletion in database_admin.php. |
In the Linux kernel, the following vulnerability has been resolved:
fs: writeback: fix use-after-free in __mark_inode_dirty()
An use-after-free issue occurred when __mark_inode_dirty() get the
bdi_writeback that was in the progress of switching.
CPU: 1 PID: 562 Comm: systemd-random- Not tainted 6.6.56-gb4403bd46a8e #1
......
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __mark_inode_dirty+0x124/0x418
lr : __mark_inode_dirty+0x118/0x418
sp : ffffffc08c9dbbc0
........
Call trace:
__mark_inode_dirty+0x124/0x418
generic_update_time+0x4c/0x60
file_modified+0xcc/0xd0
ext4_buffered_write_iter+0x58/0x124
ext4_file_write_iter+0x54/0x704
vfs_write+0x1c0/0x308
ksys_write+0x74/0x10c
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x114
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x40/0xe4
el0t_64_sync_handler+0x120/0x12c
el0t_64_sync+0x194/0x198
Root cause is:
systemd-random-seed kworker
----------------------------------------------------------------------
___mark_inode_dirty inode_switch_wbs_work_fn
spin_lock(&inode->i_lock);
inode_attach_wb
locked_inode_to_wb_and_lock_list
get inode->i_wb
spin_unlock(&inode->i_lock);
spin_lock(&wb->list_lock)
spin_lock(&inode->i_lock)
inode_io_list_move_locked
spin_unlock(&wb->list_lock)
spin_unlock(&inode->i_lock)
spin_lock(&old_wb->list_lock)
inode_do_switch_wbs
spin_lock(&inode->i_lock)
inode->i_wb = new_wb
spin_unlock(&inode->i_lock)
spin_unlock(&old_wb->list_lock)
wb_put_many(old_wb, nr_switched)
cgwb_release
old wb released
wb_wakeup_delayed() accesses wb,
then trigger the use-after-free
issue
Fix this race condition by holding inode spinlock until
wb_wakeup_delayed() finished. |
In the Linux kernel, the following vulnerability has been resolved:
tee: fix NULL pointer dereference in tee_shm_put
tee_shm_put have NULL pointer dereference:
__optee_disable_shm_cache -->
shm = reg_pair_to_ptr(...);//shm maybe return NULL
tee_shm_free(shm); -->
tee_shm_put(shm);//crash
Add check in tee_shm_put to fix it.
panic log:
Unable to handle kernel paging request at virtual address 0000000000100cca
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=0000002049d07000
[0000000000100cca] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] SMP
CPU: 2 PID: 14442 Comm: systemd-sleep Tainted: P OE ------- ----
6.6.0-39-generic #38
Source Version: 938b255f6cb8817c95b0dd5c8c2944acfce94b07
Hardware name: greatwall GW-001Y1A-FTH, BIOS Great Wall BIOS V3.0
10/26/2022
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : tee_shm_put+0x24/0x188
lr : tee_shm_free+0x14/0x28
sp : ffff001f98f9faf0
x29: ffff001f98f9faf0 x28: ffff0020df543cc0 x27: 0000000000000000
x26: ffff001f811344a0 x25: ffff8000818dac00 x24: ffff800082d8d048
x23: ffff001f850fcd18 x22: 0000000000000001 x21: ffff001f98f9fb88
x20: ffff001f83e76218 x19: ffff001f83e761e0 x18: 000000000000ffff
x17: 303a30303a303030 x16: 0000000000000000 x15: 0000000000000003
x14: 0000000000000001 x13: 0000000000000000 x12: 0101010101010101
x11: 0000000000000001 x10: 0000000000000001 x9 : ffff800080e08d0c
x8 : ffff001f98f9fb88 x7 : 0000000000000000 x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
x2 : ffff001f83e761e0 x1 : 00000000ffff001f x0 : 0000000000100cca
Call trace:
tee_shm_put+0x24/0x188
tee_shm_free+0x14/0x28
__optee_disable_shm_cache+0xa8/0x108
optee_shutdown+0x28/0x38
platform_shutdown+0x28/0x40
device_shutdown+0x144/0x2b0
kernel_power_off+0x3c/0x80
hibernate+0x35c/0x388
state_store+0x64/0x80
kobj_attr_store+0x14/0x28
sysfs_kf_write+0x48/0x60
kernfs_fop_write_iter+0x128/0x1c0
vfs_write+0x270/0x370
ksys_write+0x6c/0x100
__arm64_sys_write+0x20/0x30
invoke_syscall+0x4c/0x120
el0_svc_common.constprop.0+0x44/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x24/0x88
el0t_64_sync_handler+0x134/0x150
el0t_64_sync+0x14c/0x15 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: fix use-after-free in cmp_bss()
Following bss_free() quirk introduced in commit 776b3580178f
("cfg80211: track hidden SSID networks properly"), adjust
cfg80211_update_known_bss() to free the last beacon frame
elements only if they're not shared via the corresponding
'hidden_beacon_bss' pointer. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix use-after-free when rescheduling brcmf_btcoex_info work
The brcmf_btcoex_detach() only shuts down the btcoex timer, if the
flag timer_on is false. However, the brcmf_btcoex_timerfunc(), which
runs as timer handler, sets timer_on to false. This creates critical
race conditions:
1.If brcmf_btcoex_detach() is called while brcmf_btcoex_timerfunc()
is executing, it may observe timer_on as false and skip the call to
timer_shutdown_sync().
2.The brcmf_btcoex_timerfunc() may then reschedule the brcmf_btcoex_info
worker after the cancel_work_sync() has been executed, resulting in
use-after-free bugs.
The use-after-free bugs occur in two distinct scenarios, depending on
the timing of when the brcmf_btcoex_info struct is freed relative to
the execution of its worker thread.
Scenario 1: Freed before the worker is scheduled
The brcmf_btcoex_info is deallocated before the worker is scheduled.
A race condition can occur when schedule_work(&bt_local->work) is
called after the target memory has been freed. The sequence of events
is detailed below:
CPU0 | CPU1
brcmf_btcoex_detach | brcmf_btcoex_timerfunc
| bt_local->timer_on = false;
if (cfg->btcoex->timer_on) |
... |
cancel_work_sync(); |
... |
kfree(cfg->btcoex); // FREE |
| schedule_work(&bt_local->work); // USE
Scenario 2: Freed after the worker is scheduled
The brcmf_btcoex_info is freed after the worker has been scheduled
but before or during its execution. In this case, statements within
the brcmf_btcoex_handler() — such as the container_of macro and
subsequent dereferences of the brcmf_btcoex_info object will cause
a use-after-free access. The following timeline illustrates this
scenario:
CPU0 | CPU1
brcmf_btcoex_detach | brcmf_btcoex_timerfunc
| bt_local->timer_on = false;
if (cfg->btcoex->timer_on) |
... |
cancel_work_sync(); |
... | schedule_work(); // Reschedule
|
kfree(cfg->btcoex); // FREE | brcmf_btcoex_handler() // Worker
/* | btci = container_of(....); // USE
The kfree() above could | ...
also occur at any point | btci-> // USE
during the worker's execution|
*/ |
To resolve the race conditions, drop the conditional check and call
timer_shutdown_sync() directly. It can deactivate the timer reliably,
regardless of its current state. Once stopped, the timer_on state is
then set to false. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7915: fix list corruption after hardware restart
Since stations are recreated from scratch, all lists that wcids are added
to must be cleared before calling ieee80211_restart_hw.
Set wcid->sta = 0 for each wcid entry in order to ensure that they are
not added again before they are ready. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: vhci: Prevent use-after-free by removing debugfs files early
Move the creation of debugfs files into a dedicated function, and ensure
they are explicitly removed during vhci_release(), before associated
data structures are freed.
Previously, debugfs files such as "force_suspend", "force_wakeup", and
others were created under hdev->debugfs but not removed in
vhci_release(). Since vhci_release() frees the backing vhci_data
structure, any access to these files after release would result in
use-after-free errors.
Although hdev->debugfs is later freed in hci_release_dev(), user can
access files after vhci_data is freed but before hdev->debugfs is
released. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix use-after-free in l2cap_sock_cleanup_listen()
syzbot reported the splat below without a repro.
In the splat, a single thread calling bt_accept_dequeue() freed sk
and touched it after that.
The root cause would be the racy l2cap_sock_cleanup_listen() call
added by the cited commit.
bt_accept_dequeue() is called under lock_sock() except for
l2cap_sock_release().
Two threads could see the same socket during the list iteration
in bt_accept_dequeue():
CPU1 CPU2 (close())
---- ----
sock_hold(sk) sock_hold(sk);
lock_sock(sk) <-- block close()
sock_put(sk)
bt_accept_unlink(sk)
sock_put(sk) <-- refcnt by bt_accept_enqueue()
release_sock(sk)
lock_sock(sk)
sock_put(sk)
bt_accept_unlink(sk)
sock_put(sk) <-- last refcnt
bt_accept_unlink(sk) <-- UAF
Depending on the timing, the other thread could show up in the
"Freed by task" part.
Let's call l2cap_sock_cleanup_listen() under lock_sock() in
l2cap_sock_release().
[0]:
BUG: KASAN: slab-use-after-free in debug_spin_lock_before kernel/locking/spinlock_debug.c:86 [inline]
BUG: KASAN: slab-use-after-free in do_raw_spin_lock+0x26f/0x2b0 kernel/locking/spinlock_debug.c:115
Read of size 4 at addr ffff88803b7eb1c4 by task syz.5.3276/16995
CPU: 3 UID: 0 PID: 16995 Comm: syz.5.3276 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xcd/0x630 mm/kasan/report.c:482
kasan_report+0xe0/0x110 mm/kasan/report.c:595
debug_spin_lock_before kernel/locking/spinlock_debug.c:86 [inline]
do_raw_spin_lock+0x26f/0x2b0 kernel/locking/spinlock_debug.c:115
spin_lock_bh include/linux/spinlock.h:356 [inline]
release_sock+0x21/0x220 net/core/sock.c:3746
bt_accept_dequeue+0x505/0x600 net/bluetooth/af_bluetooth.c:312
l2cap_sock_cleanup_listen+0x5c/0x2a0 net/bluetooth/l2cap_sock.c:1451
l2cap_sock_release+0x5c/0x210 net/bluetooth/l2cap_sock.c:1425
__sock_release+0xb3/0x270 net/socket.c:649
sock_close+0x1c/0x30 net/socket.c:1439
__fput+0x3ff/0xb70 fs/file_table.c:468
task_work_run+0x14d/0x240 kernel/task_work.c:227
resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
exit_to_user_mode_loop+0xeb/0x110 kernel/entry/common.c:43
exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline]
syscall_exit_to_user_mode_work include/linux/entry-common.h:175 [inline]
syscall_exit_to_user_mode include/linux/entry-common.h:210 [inline]
do_syscall_64+0x3f6/0x4c0 arch/x86/entry/syscall_64.c:100
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f2accf8ebe9
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffdb6cb1378 EFLAGS: 00000246 ORIG_RAX: 00000000000001b4
RAX: 0000000000000000 RBX: 00000000000426fb RCX: 00007f2accf8ebe9
RDX: 0000000000000000 RSI: 000000000000001e RDI: 0000000000000003
RBP: 00007f2acd1b7da0 R08: 0000000000000001 R09: 00000012b6cb166f
R10: 0000001b30e20000 R11: 0000000000000246 R12: 00007f2acd1b609c
R13: 00007f2acd1b6090 R14: ffffffffffffffff R15: 00007ffdb6cb1490
</TASK>
Allocated by task 5326:
kasan_save_stack+0x33/0x60 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:388 [inline]
__kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:405
kasan_kmalloc include/linux/kasan.h:260 [inline]
__do_kmalloc_node mm/slub.c:4365 [inline]
__kmalloc_nopro
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
ptp: ocp: fix use-after-free bugs causing by ptp_ocp_watchdog
The ptp_ocp_detach() only shuts down the watchdog timer if it is
pending. However, if the timer handler is already running, the
timer_delete_sync() is not called. This leads to race conditions
where the devlink that contains the ptp_ocp is deallocated while
the timer handler is still accessing it, resulting in use-after-free
bugs. The following details one of the race scenarios.
(thread 1) | (thread 2)
ptp_ocp_remove() |
ptp_ocp_detach() | ptp_ocp_watchdog()
if (timer_pending(&bp->watchdog))| bp = timer_container_of()
timer_delete_sync() |
|
devlink_free(devlink) //free |
| bp-> //use
Resolve this by unconditionally calling timer_delete_sync() to ensure
the timer is reliably deactivated, preventing any access after free. |
In the Linux kernel, the following vulnerability has been resolved:
eth: mlx4: Fix IS_ERR() vs NULL check bug in mlx4_en_create_rx_ring
Replace NULL check with IS_ERR() check after calling page_pool_create()
since this function returns error pointers (ERR_PTR).
Using NULL check could lead to invalid pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix one NULL pointer dereference in smc_ib_is_sg_need_sync()
BUG: kernel NULL pointer dereference, address: 00000000000002ec
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP PTI
CPU: 28 UID: 0 PID: 343 Comm: kworker/28:1 Kdump: loaded Tainted: G OE 6.17.0-rc2+ #9 NONE
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
Workqueue: smc_hs_wq smc_listen_work [smc]
RIP: 0010:smc_ib_is_sg_need_sync+0x9e/0xd0 [smc]
...
Call Trace:
<TASK>
smcr_buf_map_link+0x211/0x2a0 [smc]
__smc_buf_create+0x522/0x970 [smc]
smc_buf_create+0x3a/0x110 [smc]
smc_find_rdma_v2_device_serv+0x18f/0x240 [smc]
? smc_vlan_by_tcpsk+0x7e/0xe0 [smc]
smc_listen_find_device+0x1dd/0x2b0 [smc]
smc_listen_work+0x30f/0x580 [smc]
process_one_work+0x18c/0x340
worker_thread+0x242/0x360
kthread+0xe7/0x220
ret_from_fork+0x13a/0x160
ret_from_fork_asm+0x1a/0x30
</TASK>
If the software RoCE device is used, ibdev->dma_device is a null pointer.
As a result, the problem occurs. Null pointer detection is added to
prevent problems. |
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: am65-cpsw-nuss: Fix null pointer dereference for ndev
In the TX completion packet stage of TI SoCs with CPSW2G instance, which
has single external ethernet port, ndev is accessed without being
initialized if no TX packets have been processed. It results into null
pointer dereference, causing kernel to crash. Fix this by having a check
on the number of TX packets which have been processed. |
In the Linux kernel, the following vulnerability has been resolved:
ice: fix NULL access of tx->in_use in ice_ptp_ts_irq
The E810 device has support for a "low latency" firmware interface to
access and read the Tx timestamps. This interface does not use the standard
Tx timestamp logic, due to the latency overhead of proxying sideband
command requests over the firmware AdminQ.
The logic still makes use of the Tx timestamp tracking structure,
ice_ptp_tx, as it uses the same "ready" bitmap to track which Tx
timestamps complete.
Unfortunately, the ice_ptp_ts_irq() function does not check if the tracker
is initialized before its first access. This results in NULL dereference or
use-after-free bugs similar to the following:
[245977.278756] BUG: kernel NULL pointer dereference, address: 0000000000000000
[245977.278774] RIP: 0010:_find_first_bit+0x19/0x40
[245977.278796] Call Trace:
[245977.278809] ? ice_misc_intr+0x364/0x380 [ice]
This can occur if a Tx timestamp interrupt races with the driver reset
logic.
Fix this by only checking the in_use bitmap (and other fields) if the
tracker is marked as initialized. The reset flow will clear the init field
under lock before it tears the tracker down, thus preventing any
use-after-free or NULL access. |
In the Linux kernel, the following vulnerability has been resolved:
ice: fix NULL access of tx->in_use in ice_ll_ts_intr
Recent versions of the E810 firmware have support for an extra interrupt to
handle report of the "low latency" Tx timestamps coming from the
specialized low latency firmware interface. Instead of polling the
registers, software can wait until the low latency interrupt is fired.
This logic makes use of the Tx timestamp tracking structure, ice_ptp_tx, as
it uses the same "ready" bitmap to track which Tx timestamps complete.
Unfortunately, the ice_ll_ts_intr() function does not check if the
tracker is initialized before its first access. This results in NULL
dereference or use-after-free bugs similar to the issues fixed in the
ice_ptp_ts_irq() function.
Fix this by only checking the in_use bitmap (and other fields) if the
tracker is marked as initialized. The reset flow will clear the init field
under lock before it tears the tracker down, thus preventing any
use-after-free or NULL access. |
In the Linux kernel, the following vulnerability has been resolved:
i40e: Fix potential invalid access when MAC list is empty
list_first_entry() never returns NULL - if the list is empty, it still
returns a pointer to an invalid object, leading to potential invalid
memory access when dereferenced.
Fix this by using list_first_entry_or_null instead of list_first_entry. |
In the Linux kernel, the following vulnerability has been resolved:
net/tcp: Fix socket memory leak in TCP-AO failure handling for IPv6
When tcp_ao_copy_all_matching() fails in tcp_v6_syn_recv_sock() it just
exits the function. This ends up causing a memory-leak:
unreferenced object 0xffff0000281a8200 (size 2496):
comm "softirq", pid 0, jiffies 4295174684
hex dump (first 32 bytes):
7f 00 00 06 7f 00 00 06 00 00 00 00 cb a8 88 13 ................
0a 00 03 61 00 00 00 00 00 00 00 00 00 00 00 00 ...a............
backtrace (crc 5ebdbe15):
kmemleak_alloc+0x44/0xe0
kmem_cache_alloc_noprof+0x248/0x470
sk_prot_alloc+0x48/0x120
sk_clone_lock+0x38/0x3b0
inet_csk_clone_lock+0x34/0x150
tcp_create_openreq_child+0x3c/0x4a8
tcp_v6_syn_recv_sock+0x1c0/0x620
tcp_check_req+0x588/0x790
tcp_v6_rcv+0x5d0/0xc18
ip6_protocol_deliver_rcu+0x2d8/0x4c0
ip6_input_finish+0x74/0x148
ip6_input+0x50/0x118
ip6_sublist_rcv+0x2fc/0x3b0
ipv6_list_rcv+0x114/0x170
__netif_receive_skb_list_core+0x16c/0x200
netif_receive_skb_list_internal+0x1f0/0x2d0
This is because in tcp_v6_syn_recv_sock (and the IPv4 counterpart), when
exiting upon error, inet_csk_prepare_forced_close() and tcp_done() need
to be called. They make sure the newsk will end up being correctly
free'd.
tcp_v4_syn_recv_sock() makes this very clear by having the put_and_exit
label that takes care of things. So, this patch here makes sure
tcp_v4_syn_recv_sock and tcp_v6_syn_recv_sock have similar
error-handling and thus fixes the leak for TCP-AO. |
In the Linux kernel, the following vulnerability has been resolved:
vxlan: Fix NPD when refreshing an FDB entry with a nexthop object
VXLAN FDB entries can point to either a remote destination or an FDB
nexthop group. The latter is usually used in EVPN deployments where
learning is disabled.
However, when learning is enabled, an incoming packet might try to
refresh an FDB entry that points to an FDB nexthop group and therefore
does not have a remote. Such packets should be dropped, but they are
only dropped after dereferencing the non-existent remote, resulting in a
NPD [1] which can be reproduced using [2].
Fix by dropping such packets earlier. Remove the misleading comment from
first_remote_rcu().
[1]
BUG: kernel NULL pointer dereference, address: 0000000000000000
[...]
CPU: 13 UID: 0 PID: 361 Comm: mausezahn Not tainted 6.17.0-rc1-virtme-g9f6b606b6b37 #1 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014
RIP: 0010:vxlan_snoop+0x98/0x1e0
[...]
Call Trace:
<TASK>
vxlan_encap_bypass+0x209/0x240
encap_bypass_if_local+0xb1/0x100
vxlan_xmit_one+0x1375/0x17e0
vxlan_xmit+0x6b4/0x15f0
dev_hard_start_xmit+0x5d/0x1c0
__dev_queue_xmit+0x246/0xfd0
packet_sendmsg+0x113a/0x1850
__sock_sendmsg+0x38/0x70
__sys_sendto+0x126/0x180
__x64_sys_sendto+0x24/0x30
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x4b/0x53
[2]
#!/bin/bash
ip address add 192.0.2.1/32 dev lo
ip address add 192.0.2.2/32 dev lo
ip nexthop add id 1 via 192.0.2.3 fdb
ip nexthop add id 10 group 1 fdb
ip link add name vx0 up type vxlan id 10010 local 192.0.2.1 dstport 12345 localbypass
ip link add name vx1 up type vxlan id 10020 local 192.0.2.2 dstport 54321 learning
bridge fdb add 00:11:22:33:44:55 dev vx0 self static dst 192.0.2.2 port 54321 vni 10020
bridge fdb add 00:aa:bb:cc:dd:ee dev vx1 self static nhid 10
mausezahn vx0 -a 00:aa:bb:cc:dd:ee -b 00:11:22:33:44:55 -c 1 -q |
In the Linux kernel, the following vulnerability has been resolved:
vxlan: Fix NPD in {arp,neigh}_reduce() when using nexthop objects
When the "proxy" option is enabled on a VXLAN device, the device will
suppress ARP requests and IPv6 Neighbor Solicitation messages if it is
able to reply on behalf of the remote host. That is, if a matching and
valid neighbor entry is configured on the VXLAN device whose MAC address
is not behind the "any" remote (0.0.0.0 / ::).
The code currently assumes that the FDB entry for the neighbor's MAC
address points to a valid remote destination, but this is incorrect if
the entry is associated with an FDB nexthop group. This can result in a
NPD [1][3] which can be reproduced using [2][4].
Fix by checking that the remote destination exists before dereferencing
it.
[1]
BUG: kernel NULL pointer dereference, address: 0000000000000000
[...]
CPU: 4 UID: 0 PID: 365 Comm: arping Not tainted 6.17.0-rc2-virtme-g2a89cb21162c #2 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014
RIP: 0010:vxlan_xmit+0xb58/0x15f0
[...]
Call Trace:
<TASK>
dev_hard_start_xmit+0x5d/0x1c0
__dev_queue_xmit+0x246/0xfd0
packet_sendmsg+0x113a/0x1850
__sock_sendmsg+0x38/0x70
__sys_sendto+0x126/0x180
__x64_sys_sendto+0x24/0x30
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x4b/0x53
[2]
#!/bin/bash
ip address add 192.0.2.1/32 dev lo
ip nexthop add id 1 via 192.0.2.2 fdb
ip nexthop add id 10 group 1 fdb
ip link add name vx0 up type vxlan id 10010 local 192.0.2.1 dstport 4789 proxy
ip neigh add 192.0.2.3 lladdr 00:11:22:33:44:55 nud perm dev vx0
bridge fdb add 00:11:22:33:44:55 dev vx0 self static nhid 10
arping -b -c 1 -s 192.0.2.1 -I vx0 192.0.2.3
[3]
BUG: kernel NULL pointer dereference, address: 0000000000000000
[...]
CPU: 13 UID: 0 PID: 372 Comm: ndisc6 Not tainted 6.17.0-rc2-virtmne-g6ee90cb26014 #3 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1v996), BIOS 1.17.0-4.fc41 04/01/2x014
RIP: 0010:vxlan_xmit+0x803/0x1600
[...]
Call Trace:
<TASK>
dev_hard_start_xmit+0x5d/0x1c0
__dev_queue_xmit+0x246/0xfd0
ip6_finish_output2+0x210/0x6c0
ip6_finish_output+0x1af/0x2b0
ip6_mr_output+0x92/0x3e0
ip6_send_skb+0x30/0x90
rawv6_sendmsg+0xe6e/0x12e0
__sock_sendmsg+0x38/0x70
__sys_sendto+0x126/0x180
__x64_sys_sendto+0x24/0x30
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f383422ec77
[4]
#!/bin/bash
ip address add 2001:db8:1::1/128 dev lo
ip nexthop add id 1 via 2001:db8:1::1 fdb
ip nexthop add id 10 group 1 fdb
ip link add name vx0 up type vxlan id 10010 local 2001:db8:1::1 dstport 4789 proxy
ip neigh add 2001:db8:1::3 lladdr 00:11:22:33:44:55 nud perm dev vx0
bridge fdb add 00:11:22:33:44:55 dev vx0 self static nhid 10
ndisc6 -r 1 -s 2001:db8:1::1 -w 1 2001:db8:1::3 vx0 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: sme: cap SSID length in __cfg80211_connect_result()
If the ssid->datalen is more than IEEE80211_MAX_SSID_LEN (32) it would
lead to memory corruption so add some bounds checking. |