CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: fix NULL dereference on q->elevator in blk_mq_elv_switch_none
After grabbing q->sysfs_lock, q->elevator may become NULL because of
elevator switch.
Fix the NULL dereference on q->elevator by checking it with lock. |
In the Linux kernel, the following vulnerability has been resolved:
rcu/rcuscale: Stop kfree_scale_thread thread(s) after unloading rcuscale
Running the 'kfree_rcu_test' test case [1] results in a splat [2].
The root cause is the kfree_scale_thread thread(s) continue running
after unloading the rcuscale module. This commit fixes that isue by
invoking kfree_scale_cleanup() from rcu_scale_cleanup() when removing
the rcuscale module.
[1] modprobe rcuscale kfree_rcu_test=1
// After some time
rmmod rcuscale
rmmod torture
[2] BUG: unable to handle page fault for address: ffffffffc0601a87
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
PGD 11de4f067 P4D 11de4f067 PUD 11de51067 PMD 112f4d067 PTE 0
Oops: 0010 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 1798 Comm: kfree_scale_thr Not tainted 6.3.0-rc1-rcu+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
RIP: 0010:0xffffffffc0601a87
Code: Unable to access opcode bytes at 0xffffffffc0601a5d.
RSP: 0018:ffffb25bc2e57e18 EFLAGS: 00010297
RAX: 0000000000000000 RBX: ffffffffc061f0b6 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff962fd0de RDI: ffffffff962fd0de
RBP: ffffb25bc2e57ea8 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000000
R13: 0000000000000000 R14: 000000000000000a R15: 00000000001c1dbe
FS: 0000000000000000(0000) GS:ffff921fa2200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffc0601a5d CR3: 000000011de4c006 CR4: 0000000000370ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? kvfree_call_rcu+0xf0/0x3a0
? kthread+0xf3/0x120
? kthread_complete_and_exit+0x20/0x20
? ret_from_fork+0x1f/0x30
</TASK>
Modules linked in: rfkill sunrpc ... [last unloaded: torture]
CR2: ffffffffc0601a87
---[ end trace 0000000000000000 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
samples/bpf: Fix fout leak in hbm's run_bpf_prog
Fix fout being fopen'ed but then not subsequently fclose'd. In the affected
branch, fout is otherwise going out of scope. |
In the Linux kernel, the following vulnerability has been resolved:
media: bdisp: Add missing check for create_workqueue
Add the check for the return value of the create_workqueue
in order to avoid NULL pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
drm/client: Fix memory leak in drm_client_modeset_probe
When a new mode is set to modeset->mode, the previous mode should be freed.
This fixes the following kmemleak report:
drm_mode_duplicate+0x45/0x220 [drm]
drm_client_modeset_probe+0x944/0xf50 [drm]
__drm_fb_helper_initial_config_and_unlock+0xb4/0x2c0 [drm_kms_helper]
drm_fbdev_client_hotplug+0x2bc/0x4d0 [drm_kms_helper]
drm_client_register+0x169/0x240 [drm]
ast_pci_probe+0x142/0x190 [ast]
local_pci_probe+0xdc/0x180
work_for_cpu_fn+0x4e/0xa0
process_one_work+0x8b7/0x1540
worker_thread+0x70a/0xed0
kthread+0x29f/0x340
ret_from_fork+0x1f/0x30 |
In the Linux kernel, the following vulnerability has been resolved:
usb: cdns3: Put the cdns set active part outside the spin lock
The device may be scheduled during the resume process,
so this cannot appear in atomic operations. Since
pm_runtime_set_active will resume suppliers, put set
active outside the spin lock, which is only used to
protect the struct cdns data structure, otherwise the
kernel will report the following warning:
BUG: sleeping function called from invalid context at drivers/base/power/runtime.c:1163
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 651, name: sh
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
CPU: 0 PID: 651 Comm: sh Tainted: G WC 6.1.20 #1
Hardware name: Freescale i.MX8QM MEK (DT)
Call trace:
dump_backtrace.part.0+0xe0/0xf0
show_stack+0x18/0x30
dump_stack_lvl+0x64/0x80
dump_stack+0x1c/0x38
__might_resched+0x1fc/0x240
__might_sleep+0x68/0xc0
__pm_runtime_resume+0x9c/0xe0
rpm_get_suppliers+0x68/0x1b0
__pm_runtime_set_status+0x298/0x560
cdns_resume+0xb0/0x1c0
cdns3_controller_resume.isra.0+0x1e0/0x250
cdns3_plat_resume+0x28/0x40 |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Return the firmware result upon destroying QP/RQ
Previously when destroying a QP/RQ, the result of the firmware
destruction function was ignored and upper layers weren't informed
about the failure.
Which in turn could lead to various problems since when upper layer
isn't aware of the failure it continues its operation thinking that the
related QP/RQ was successfully destroyed while it actually wasn't,
which could lead to the below kernel WARN.
Currently, we return the correct firmware destruction status to upper
layers which in case of the RQ would be mlx5_ib_destroy_wq() which
was already capable of handling RQ destruction failure or in case of
a QP to destroy_qp_common(), which now would actually warn upon qp
destruction failure.
WARNING: CPU: 3 PID: 995 at drivers/infiniband/core/rdma_core.c:940 uverbs_destroy_ufile_hw+0xcb/0xe0 [ib_uverbs]
Modules linked in: xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi rdma_cm ib_umad ib_ipoib iw_cm ib_cm mlx5_ib ib_uverbs ib_core overlay mlx5_core fuse
CPU: 3 PID: 995 Comm: python3 Not tainted 5.16.0-rc5+ #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:uverbs_destroy_ufile_hw+0xcb/0xe0 [ib_uverbs]
Code: 41 5c 41 5d 41 5e e9 44 34 f0 e0 48 89 df e8 4c 77 ff ff 49 8b 86 10 01 00 00 48 85 c0 74 a1 4c 89 e7 ff d0 eb 9a 0f 0b eb c1 <0f> 0b be 04 00 00 00 48 89 df e8 b6 f6 ff ff e9 75 ff ff ff 90 0f
RSP: 0018:ffff8881533e3e78 EFLAGS: 00010287
RAX: ffff88811b2cf3e0 RBX: ffff888106209700 RCX: 0000000000000000
RDX: ffff888106209780 RSI: ffff8881533e3d30 RDI: ffff888109b101a0
RBP: 0000000000000001 R08: ffff888127cb381c R09: 0de9890000000009
R10: ffff888127cb3800 R11: 0000000000000000 R12: ffff888106209780
R13: ffff888106209750 R14: ffff888100f20660 R15: 0000000000000000
FS: 00007f8be353b740(0000) GS:ffff88852c980000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f8bd5b117c0 CR3: 000000012cd8a004 CR4: 0000000000370ea0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
ib_uverbs_close+0x1a/0x90 [ib_uverbs]
__fput+0x82/0x230
task_work_run+0x59/0x90
exit_to_user_mode_prepare+0x138/0x140
syscall_exit_to_user_mode+0x1d/0x50
? __x64_sys_close+0xe/0x40
do_syscall_64+0x4a/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f8be3ae0abb
Code: 03 00 00 00 0f 05 48 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 83 43 f9 ff 8b 7c 24 0c 41 89 c0 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 35 44 89 c7 89 44 24 0c e8 c1 43 f9 ff 8b 44
RSP: 002b:00007ffdb51909c0 EFLAGS: 00000293 ORIG_RAX: 0000000000000003
RAX: 0000000000000000 RBX: 0000557bb7f7c020 RCX: 00007f8be3ae0abb
RDX: 0000557bb7c74010 RSI: 0000557bb7f14ca0 RDI: 0000000000000005
RBP: 0000557bb7fbd598 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000293 R12: 0000557bb7fbd5b8
R13: 0000557bb7fbd5a8 R14: 0000000000001000 R15: 0000557bb7f7c020
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
ext4: add bounds checking in get_max_inline_xattr_value_size()
Normally the extended attributes in the inode body would have been
checked when the inode is first opened, but if someone is writing to
the block device while the file system is mounted, it's possible for
the inode table to get corrupted. Add bounds checking to avoid
reading beyond the end of allocated memory if this happens. |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: check for null return of devm_kzalloc() in dpu_writeback_init()
Because of the possilble failure of devm_kzalloc(), dpu_wb_conn might
be NULL and will cause null pointer dereference later.
Therefore, it might be better to check it and directly return -ENOMEM.
Patchwork: https://patchwork.freedesktop.org/patch/512277/
[DB: fixed typo in commit message] |
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix use-after-free KFENCE violation during sysfs firmware write
During the sysfs firmware write process, a use-after-free read warning is
logged from the lpfc_wr_object() routine:
BUG: KFENCE: use-after-free read in lpfc_wr_object+0x235/0x310 [lpfc]
Use-after-free read at 0x0000000000cf164d (in kfence-#111):
lpfc_wr_object+0x235/0x310 [lpfc]
lpfc_write_firmware.cold+0x206/0x30d [lpfc]
lpfc_sli4_request_firmware_update+0xa6/0x100 [lpfc]
lpfc_request_firmware_upgrade_store+0x66/0xb0 [lpfc]
kernfs_fop_write_iter+0x121/0x1b0
new_sync_write+0x11c/0x1b0
vfs_write+0x1ef/0x280
ksys_write+0x5f/0xe0
do_syscall_64+0x59/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The driver accessed wr_object pointer data, which was initialized into
mailbox payload memory, after the mailbox object was released back to the
mailbox pool.
Fix by moving the mailbox free calls to the end of the routine ensuring
that we don't reference internal mailbox memory after release. |
In the Linux kernel, the following vulnerability has been resolved:
drivers: staging: rtl8723bs: Fix locking in _rtw_join_timeout_handler()
Commit 041879b12ddb ("drivers: staging: rtl8192bs: Fix deadlock in
rtw_joinbss_event_prehandle()") besides fixing the deadlock also
modified _rtw_join_timeout_handler() to use spin_[un]lock_irq()
instead of spin_[un]lock_bh().
_rtw_join_timeout_handler() calls rtw_do_join() which takes
pmlmepriv->scanned_queue.lock using spin_[un]lock_bh(). This
spin_unlock_bh() call re-enables softirqs which triggers an oops in
kernel/softirq.c: __local_bh_enable_ip() when it calls
lockdep_assert_irqs_enabled():
[ 244.506087] WARNING: CPU: 2 PID: 0 at kernel/softirq.c:376 __local_bh_enable_ip+0xa6/0x100
...
[ 244.509022] Call Trace:
[ 244.509048] <IRQ>
[ 244.509100] _rtw_join_timeout_handler+0x134/0x170 [r8723bs]
[ 244.509468] ? __pfx__rtw_join_timeout_handler+0x10/0x10 [r8723bs]
[ 244.509772] ? __pfx__rtw_join_timeout_handler+0x10/0x10 [r8723bs]
[ 244.510076] call_timer_fn+0x95/0x2a0
[ 244.510200] __run_timers.part.0+0x1da/0x2d0
This oops is causd by the switch to spin_[un]lock_irq() which disables
the IRQs for the entire duration of _rtw_join_timeout_handler().
Disabling the IRQs is not necessary since all code taking this lock
runs from either user contexts or from softirqs, switch back to
spin_[un]lock_bh() to fix this. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Remove unused nvme_ls_waitq wait queue
System crash when qla2x00_start_sp(sp) returns error code EGAIN and wake_up
gets called for uninitialized wait queue sp->nvme_ls_waitq.
qla2xxx [0000:37:00.1]-2121:5: Returning existing qpair of ffff8ae2c0513400 for idx=0
qla2xxx [0000:37:00.1]-700e:5: qla2x00_start_sp failed = 11
BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
PGD 0 P4D 0
Oops: 0000 [#1] SMP NOPTI
Hardware name: HPE ProLiant DL360 Gen10/ProLiant DL360 Gen10, BIOS U32 09/03/2021
Workqueue: nvme-wq nvme_fc_connect_ctrl_work [nvme_fc]
RIP: 0010:__wake_up_common+0x4c/0x190
RSP: 0018:ffff95f3e0cb7cd0 EFLAGS: 00010086
RAX: 0000000000000000 RBX: ffff8b08d3b26328 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000003 RDI: ffff8b08d3b26320
RBP: 0000000000000001 R08: 0000000000000000 R09: ffffffffffffffe8
R10: 0000000000000000 R11: ffff95f3e0cb7a60 R12: ffff95f3e0cb7d20
R13: 0000000000000003 R14: 0000000000000000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8b2fdf6c0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000002f1e410002 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
__wake_up_common_lock+0x7c/0xc0
qla_nvme_ls_req+0x355/0x4c0 [qla2xxx]
? __nvme_fc_send_ls_req+0x260/0x380 [nvme_fc]
? nvme_fc_send_ls_req.constprop.42+0x1a/0x45 [nvme_fc]
? nvme_fc_connect_ctrl_work.cold.63+0x1e3/0xa7d [nvme_fc]
Remove unused nvme_ls_waitq wait queue. nvme_ls_waitq logic was removed
previously in the commits tagged Fixed: below. |
In the Linux kernel, the following vulnerability has been resolved:
misc: vmw_balloon: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once. |
In the Linux kernel, the following vulnerability has been resolved:
ubifs: Fix memory leak in ubifs_sysfs_init()
When insmod ubifs.ko, a kmemleak reported as below:
unreferenced object 0xffff88817fb1a780 (size 8):
comm "insmod", pid 25265, jiffies 4295239702 (age 100.130s)
hex dump (first 8 bytes):
75 62 69 66 73 00 ff ff ubifs...
backtrace:
[<ffffffff81b3fc4c>] slab_post_alloc_hook+0x9c/0x3c0
[<ffffffff81b44bf3>] __kmalloc_track_caller+0x183/0x410
[<ffffffff8198d3da>] kstrdup+0x3a/0x80
[<ffffffff8198d486>] kstrdup_const+0x66/0x80
[<ffffffff83989325>] kvasprintf_const+0x155/0x190
[<ffffffff83bf55bb>] kobject_set_name_vargs+0x5b/0x150
[<ffffffff83bf576b>] kobject_set_name+0xbb/0xf0
[<ffffffff8100204c>] do_one_initcall+0x14c/0x5a0
[<ffffffff8157e380>] do_init_module+0x1f0/0x660
[<ffffffff815857be>] load_module+0x6d7e/0x7590
[<ffffffff8158644f>] __do_sys_finit_module+0x19f/0x230
[<ffffffff815866b3>] __x64_sys_finit_module+0x73/0xb0
[<ffffffff88c98e85>] do_syscall_64+0x35/0x80
[<ffffffff88e00087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
When kset_register() failed, we should call kset_put to cleanup it. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwl3945: Add missing check for create_singlethread_workqueue
Add the check for the return value of the create_singlethread_workqueue
in order to avoid NULL pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
ubifs: Free memory for tmpfile name
When opening a ubifs tmpfile on an encrypted directory, function
fscrypt_setup_filename allocates memory for the name that is to be
stored in the directory entry, but after the name has been copied to the
directory entry inode, the memory is not freed.
When running kmemleak on it we see that it is registered as a leak. The
report below is triggered by a simple program 'tmpfile' just opening a
tmpfile:
unreferenced object 0xffff88810178f380 (size 32):
comm "tmpfile", pid 509, jiffies 4294934744 (age 1524.742s)
backtrace:
__kmem_cache_alloc_node
__kmalloc
fscrypt_setup_filename
ubifs_tmpfile
vfs_tmpfile
path_openat
Free this memory after it has been copied to the inode. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: fix a possible null-pointer dereference due to data race in snd_hdac_regmap_sync()
The variable codec->regmap is often protected by the lock
codec->regmap_lock when is accessed. However, it is accessed without
holding the lock when is accessed in snd_hdac_regmap_sync():
if (codec->regmap)
In my opinion, this may be a harmful race, because if codec->regmap is
set to NULL right after the condition is checked, a null-pointer
dereference can occur in the called function regcache_sync():
map->lock(map->lock_arg); --> Line 360 in drivers/base/regmap/regcache.c
To fix this possible null-pointer dereference caused by data race, the
mutex_lock coverage is extended to protect the if statement as well as the
function call to regcache_sync().
[ Note: the lack of the regmap_lock itself is harmless for the current
codec driver implementations, as snd_hdac_regmap_sync() is only for
PM runtime resume that is prohibited during the codec probe.
But the change makes the whole code more consistent, so it's merged
as is -- tiwai ] |
In the Linux kernel, the following vulnerability has been resolved:
clk: mediatek: mt8183: Add back SSPM related clocks
This reverts commit 860690a93ef23b567f781c1b631623e27190f101.
On the MT8183, the SSPM related clocks were removed claiming a lack of
usage. This however causes some issues when the driver was converted to
the new simple-probe mechanism. This mechanism allocates enough space
for all the clocks defined in the clock driver, not the highest index
in the DT binding. This leads to out-of-bound writes if their are holes
in the DT binding or the driver (due to deprecated or unimplemented
clocks). These errors can go unnoticed and cause memory corruption,
leading to crashes in unrelated areas, or nothing at all. KASAN will
detect them.
Add the SSPM related clocks back to the MT8183 clock driver to fully
implement the DT binding. The SSPM clocks are for the power management
co-processor, and should never be turned off. They are marked as such. |
In the Linux kernel, the following vulnerability has been resolved:
Drivers: vmbus: Check for channel allocation before looking up relids
relid2channel() assumes vmbus channel array to be allocated when called.
However, in cases such as kdump/kexec, not all relids will be reset by the host.
When the second kernel boots and if the guest receives a vmbus interrupt during
vmbus driver initialization before vmbus_connect() is called, before it finishes,
or if it fails, the vmbus interrupt service routine is called which in turn calls
relid2channel() and can cause a null pointer dereference.
Print a warning and error out in relid2channel() for a channel id that's invalid
in the second kernel. |
In the Linux kernel, the following vulnerability has been resolved:
net: ena: fix shift-out-of-bounds in exponential backoff
The ENA adapters on our instances occasionally reset. Once recently
logged a UBSAN failure to console in the process:
UBSAN: shift-out-of-bounds in build/linux/drivers/net/ethernet/amazon/ena/ena_com.c:540:13
shift exponent 32 is too large for 32-bit type 'unsigned int'
CPU: 28 PID: 70012 Comm: kworker/u72:2 Kdump: loaded not tainted 5.15.117
Hardware name: Amazon EC2 c5d.9xlarge/, BIOS 1.0 10/16/2017
Workqueue: ena ena_fw_reset_device [ena]
Call Trace:
<TASK>
dump_stack_lvl+0x4a/0x63
dump_stack+0x10/0x16
ubsan_epilogue+0x9/0x36
__ubsan_handle_shift_out_of_bounds.cold+0x61/0x10e
? __const_udelay+0x43/0x50
ena_delay_exponential_backoff_us.cold+0x16/0x1e [ena]
wait_for_reset_state+0x54/0xa0 [ena]
ena_com_dev_reset+0xc8/0x110 [ena]
ena_down+0x3fe/0x480 [ena]
ena_destroy_device+0xeb/0xf0 [ena]
ena_fw_reset_device+0x30/0x50 [ena]
process_one_work+0x22b/0x3d0
worker_thread+0x4d/0x3f0
? process_one_work+0x3d0/0x3d0
kthread+0x12a/0x150
? set_kthread_struct+0x50/0x50
ret_from_fork+0x22/0x30
</TASK>
Apparently, the reset delays are getting so large they can trigger a
UBSAN panic.
Looking at the code, the current timeout is capped at 5000us. Using a
base value of 100us, the current code will overflow after (1<<29). Even
at values before 32, this function wraps around, perhaps
unintentionally.
Cap the value of the exponent used for this backoff at (1<<16) which is
larger than currently necessary, but large enough to support bigger
values in the future. |