Search

Search Results (311829 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-11045 2025-09-26 7.3 High
A vulnerability was identified in WAYOS LQ_04, LQ_05, LQ_06, LQ_07 and LQ_09 22.03.17. This affects an unknown function of the file /usb_paswd.asp. The manipulation of the argument Name leads to command injection. The attack can be initiated remotely. The exploit is publicly available and might be used.
CVE-2025-10657 2025-09-26 N/A
In a hardened Docker environment, with Enhanced Container Isolation ( ECI https://docs.docker.com/enterprise/security/hardened-desktop/enhanced-container-isolation/ ) enabled, an administrator can utilize the command restrictions feature https://docs.docker.com/enterprise/security/hardened-desktop/enhanced-container-isolation/config/#command-restrictions  to restrict commands that a container with a Docker socket mount may issue on that socket. Due to a software bug, the configuration to restrict commands was ignored when passed to ECI, allowing any command to be executed on the socket. This grants excessive privileges by permitting unrestricted access to powerful Docker commands. The vulnerability affects only Docker Desktop 4.46.0 users that have ECI enabled and are using the Docker socket command restrictions feature. In addition, since ECI restricts mounting the Docker socket into containers by default, it only affects containers which are explicitly allowed by the administrator to mount the Docker socket.
CVE-2025-11040 2025-09-26 7.3 High
A vulnerability was detected in code-projects Hostel Management System 1.0. Affected by this issue is some unknown functionality of the file /justines/admin/mod_users/index.php?view=view. The manipulation of the argument ID results in sql injection. The attack can be executed remotely. The exploit is now public and may be used.
CVE-2025-11041 2025-09-26 6.3 Medium
A vulnerability has been found in itsourcecode Open Source Job Portal 1.0. Affected by this issue is some unknown functionality of the file /admin/user/index.php?view=edit. The manipulation of the argument ID leads to sql injection. The attack is possible to be carried out remotely. The exploit has been disclosed to the public and may be used.
CVE-2024-56676 1 Linux 1 Linux Kernel 2025-09-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: thermal: testing: Initialize some variables annoteded with _free() Variables annotated with __free() need to be initialized if the function can return before they get updated for the first time or the attempt to free the memory pointed to by them upon function return may crash the kernel. Fix this issue in some places in the thermal testing code.
CVE-2024-56677 1 Linux 1 Linux Kernel 2025-09-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/fadump: Move fadump_cma_init to setup_arch() after initmem_init() During early init CMA_MIN_ALIGNMENT_BYTES can be PAGE_SIZE, since pageblock_order is still zero and it gets initialized later during initmem_init() e.g. setup_arch() -> initmem_init() -> sparse_init() -> set_pageblock_order() One such use case where this causes issue is - early_setup() -> early_init_devtree() -> fadump_reserve_mem() -> fadump_cma_init() This causes CMA memory alignment check to be bypassed in cma_init_reserved_mem(). Then later cma_activate_area() can hit a VM_BUG_ON_PAGE(pfn & ((1 << order) - 1)) if the reserved memory area was not pageblock_order aligned. Fix it by moving the fadump_cma_init() after initmem_init(), where other such cma reservations also gets called. <stack trace> ============== page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x10010 flags: 0x13ffff800000000(node=1|zone=0|lastcpupid=0x7ffff) CMA raw: 013ffff800000000 5deadbeef0000100 5deadbeef0000122 0000000000000000 raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: VM_BUG_ON_PAGE(pfn & ((1 << order) - 1)) ------------[ cut here ]------------ kernel BUG at mm/page_alloc.c:778! Call Trace: __free_one_page+0x57c/0x7b0 (unreliable) free_pcppages_bulk+0x1a8/0x2c8 free_unref_page_commit+0x3d4/0x4e4 free_unref_page+0x458/0x6d0 init_cma_reserved_pageblock+0x114/0x198 cma_init_reserved_areas+0x270/0x3e0 do_one_initcall+0x80/0x2f8 kernel_init_freeable+0x33c/0x530 kernel_init+0x34/0x26c ret_from_kernel_user_thread+0x14/0x1c
CVE-2024-56685 1 Linux 1 Linux Kernel 2025-09-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: mediatek: Check num_codecs is not zero to avoid panic during probe Following commit 13f58267cda3 ("ASoC: soc.h: don't create dummy Component via COMP_DUMMY()"), COMP_DUMMY() became an array with zero length, and only gets populated with the dummy struct after the card is registered. Since the sound card driver's probe happens before the card registration, accessing any of the members of a dummy component during probe will result in undefined behavior. This can be observed in the mt8188 and mt8195 machine sound drivers. By omitting a dai link subnode in the sound card's node in the Devicetree, the default uninitialized dummy codec is used, and when its dai_name pointer gets passed to strcmp() it results in a null pointer dereference and a kernel panic. In addition to that, set_card_codec_info() in the generic helpers file, mtk-soundcard-driver.c, will populate a dai link with a dummy codec when a dai link node is present in DT but with no codec property. The result is that at probe time, a dummy codec can either be uninitialized with num_codecs = 0, or be an initialized dummy codec, with num_codecs = 1 and dai_name = "snd-soc-dummy-dai". In order to accommodate for both situations, check that num_codecs is not zero before accessing the codecs' fields but still check for the codec's dai name against "snd-soc-dummy-dai" as needed. While at it, also drop the check that dai_name is not null in the mt8192 driver, introduced in commit 4d4e1b6319e5 ("ASoC: mediatek: mt8192: Check existence of dai_name before dereferencing"), as it is actually redundant given the preceding num_codecs != 0 check.
CVE-2024-56699 1 Linux 1 Linux Kernel 2025-09-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: s390/pci: Fix potential double remove of hotplug slot In commit 6ee600bfbe0f ("s390/pci: remove hotplug slot when releasing the device") the zpci_exit_slot() was moved from zpci_device_reserved() to zpci_release_device() with the intention of keeping the hotplug slot around until the device is actually removed. Now zpci_release_device() is only called once all references are dropped. Since the zPCI subsystem only drops its reference once the device is in the reserved state it follows that zpci_release_device() must only deal with devices in the reserved state. Despite that it contains code to tear down from both configured and standby state. For the standby case this already includes the removal of the hotplug slot so would cause a double removal if a device was ever removed in either configured or standby state. Instead of causing a potential double removal in a case that should never happen explicitly WARN_ON() if a device in non-reserved state is released and get rid of the dead code cases.
CVE-2024-56700 1 Linux 1 Linux Kernel 2025-09-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: wl128x: Fix atomicity violation in fmc_send_cmd() Atomicity violation occurs when the fmc_send_cmd() function is executed simultaneously with the modification of the fmdev->resp_skb value. Consider a scenario where, after passing the validity check within the function, a non-null fmdev->resp_skb variable is assigned a null value. This results in an invalid fmdev->resp_skb variable passing the validity check. As seen in the later part of the function, skb = fmdev->resp_skb; when the invalid fmdev->resp_skb passes the check, a null pointer dereference error may occur at line 478, evt_hdr = (void *)skb->data; To address this issue, it is recommended to include the validity check of fmdev->resp_skb within the locked section of the function. This modification ensures that the value of fmdev->resp_skb does not change during the validation process, thereby maintaining its validity. This possible bug is found by an experimental static analysis tool developed by our team. This tool analyzes the locking APIs to extract function pairs that can be concurrently executed, and then analyzes the instructions in the paired functions to identify possible concurrency bugs including data races and atomicity violations.
CVE-2024-56706 1 Linux 1 Linux Kernel 2025-09-26 6.3 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/cpum_sf: Fix and protect memory allocation of SDBs with mutex Reservation of the PMU hardware is done at first event creation and is protected by a pair of mutex_lock() and mutex_unlock(). After reservation of the PMU hardware the memory required for the PMUs the event is to be installed on is allocated by allocate_buffers() and alloc_sampling_buffer(). This done outside of the mutex protection. Without mutex protection two or more concurrent invocations of perf_event_init() may run in parallel. This can lead to allocation of Sample Data Blocks (SDBs) multiple times for the same PMU. Prevent this and protect memory allocation of SDBs by mutex.
CVE-2024-57849 1 Linux 1 Linux Kernel 2025-09-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: s390/cpum_sf: Handle CPU hotplug remove during sampling CPU hotplug remove handling triggers the following function call sequence: CPUHP_AP_PERF_S390_SF_ONLINE --> s390_pmu_sf_offline_cpu() ... CPUHP_AP_PERF_ONLINE --> perf_event_exit_cpu() The s390 CPUMF sampling CPU hotplug handler invokes: s390_pmu_sf_offline_cpu() +--> cpusf_pmu_setup() +--> setup_pmc_cpu() +--> deallocate_buffers() This function de-allocates all sampling data buffers (SDBs) allocated for that CPU at event initialization. It also clears the PMU_F_RESERVED bit. The CPU is gone and can not be sampled. With the event still being active on the removed CPU, the CPU event hotplug support in kernel performance subsystem triggers the following function calls on the removed CPU: perf_event_exit_cpu() +--> perf_event_exit_cpu_context() +--> __perf_event_exit_context() +--> __perf_remove_from_context() +--> event_sched_out() +--> cpumsf_pmu_del() +--> cpumsf_pmu_stop() +--> hw_perf_event_update() to stop and remove the event. During removal of the event, the sampling device driver tries to read out the remaining samples from the sample data buffers (SDBs). But they have already been freed (and may have been re-assigned). This may lead to a use after free situation in which case the samples are most likely invalid. In the best case the memory has not been reassigned and still contains valid data. Remedy this situation and check if the CPU is still in reserved state (bit PMU_F_RESERVED set). In this case the SDBs have not been released an contain valid data. This is always the case when the event is removed (and no CPU hotplug off occured). If the PMU_F_RESERVED bit is not set, the SDB buffers are gone.
CVE-2024-57876 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-09-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/dp_mst: Fix resetting msg rx state after topology removal If the MST topology is removed during the reception of an MST down reply or MST up request sideband message, the drm_dp_mst_topology_mgr::up_req_recv/down_rep_recv states could be reset from one thread via drm_dp_mst_topology_mgr_set_mst(false), racing with the reading/parsing of the message from another thread via drm_dp_mst_handle_down_rep() or drm_dp_mst_handle_up_req(). The race is possible since the reader/parser doesn't hold any lock while accessing the reception state. This in turn can lead to a memory corruption in the reader/parser as described by commit bd2fccac61b4 ("drm/dp_mst: Fix MST sideband message body length check"). Fix the above by resetting the message reception state if needed before reading/parsing a message. Another solution would be to hold the drm_dp_mst_topology_mgr::lock for the whole duration of the message reception/parsing in drm_dp_mst_handle_down_rep() and drm_dp_mst_handle_up_req(), however this would require a bigger change. Since the fix is also needed for stable, opting for the simpler solution in this patch.
CVE-2025-57623 1 Totolink 1 N600r Firmware 2025-09-26 5.3 Medium
A NULL pointer dereference in TOTOLINK N600R firmware v4.3.0cu.7866_B2022506 allows attackers to cause a Denial of Service.
CVE-2025-57446 1 O-ran-sc 1 Ric-plt-submgr 2025-09-26 7.5 High
An issue in O-RAN Near Realtime RIC ric-plt-submgr in the J-Release environment, allows remote attackers to cause a denial of service (DoS) via a crafted request to the Subscription Manager API component.
CVE-2025-55560 1 Pytorch 1 Pytorch 2025-09-26 7.5 High
An issue in pytorch v2.7.0 can lead to a Denial of Service (DoS) when a PyTorch model consists of torch.Tensor.to_sparse() and torch.Tensor.to_dense() and is compiled by Inductor.
CVE-2025-55558 1 Pytorch 1 Pytorch 2025-09-26 7.5 High
A buffer overflow occurs in pytorch v2.7.0 when a PyTorch model consists of torch.nn.Conv2d, torch.nn.functional.hardshrink, and torch.Tensor.view-torch.mv() and is compiled by Inductor, leading to a Denial of Service (DoS).
CVE-2025-55556 1 Tensorflow 1 Tensorflow 2025-09-26 6.5 Medium
TensorFlow v2.18.0 was discovered to output random results when compiling Embedding, leading to unexpected behavior in the application.
CVE-2025-55554 1 Pytorch 1 Pytorch 2025-09-26 5.3 Medium
pytorch v2.8.0 was discovered to contain an integer overflow in the component torch.nan_to_num-.long().
CVE-2025-54831 2025-09-26 7.5 High
Apache Airflow 3 introduced a change to the handling of sensitive information in Connections. The intent was to restrict access to sensitive connection fields to Connection Editing Users, effectively applying a "write-only" model for sensitive values. In Airflow 3.0.3, this model was unintentionally violated: sensitive connection information could be viewed by users with READ permissions through both the API and the UI. This behavior also bypassed the `AIRFLOW__CORE__HIDE_SENSITIVE_VAR_CONN_FIELDS` configuration option. This issue does not affect Airflow 2.x, where exposing sensitive information to connection editors was the intended and documented behavior. Users of Airflow 3.0.3 are advised to upgrade Airflow to >=3.0.4.
CVE-2025-50879 2025-09-26 N/A
DO NOT USE THIS CVE RECORD. ConsultIDs: none. Reason: This record was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: none.