| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow via the shareSpeed parameter in the fromSetWifiGusetBasic function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| A stack-based buffer overflow was found in the QEMU e1000 network device. The code for padding short frames was dropped from individual network devices and moved to the net core code. The issue stems from the device's receive code still being able to process a short frame in loopback mode. This could lead to a buffer overrun in the e1000_receive_iov() function via the loopback code path. A malicious guest user could use this vulnerability to crash the QEMU process on the host, resulting in a denial of service. |
| CryptoLib provides a software-only solution using the CCSDS Space Data Link Security Protocol - Extended Procedures (SDLS-EP) to secure communications between a spacecraft running the core Flight System (cFS) and a ground station. Prier to 1.4.2, there is a missing bounds check in Crypto_Key_update() (crypto_key_mgmt.c) which allows a remote attacker to trigger a stack-based buffer overflow by supplying a TLV packet with a spoofed length field. The function calculates the number of keys from an attacker-controlled field (pdu_len), which may exceed the static array size (kblk[98]), leading to an out-of-bounds write and potential memory corruption. This vulnerability is fixed in 1.4.2. |
| A flaw was found in libxml2's xmlBuildQName function, where integer overflows in buffer size calculations can lead to a stack-based buffer overflow. This issue can result in memory corruption or a denial of service when processing crafted input. |
| A vulnerability was reported in the Open vSwitch sub-component in the Linux Kernel. The flaw occurs when a recursive operation of code push recursively calls into the code block. The OVS module does not validate the stack depth, pushing too many frames and causing a stack overflow. As a result, this can lead to a crash or other related issues. |
| A flaw was found in the interactive shell of the xmllint command-line tool, used for parsing XML files. When a user inputs an overly long command, the program does not check the input size properly, which can cause it to crash. This issue might allow attackers to run harmful code in rare configurations without modern protections. |
| In xfig diagramming tool, a stack-overflow while running fig2dev allows memory corruption via local input manipulation via read_objects function. |
| In xfig diagramming tool, a stack-overflow while running fig2dev allows memory corruption via local input manipulation at the bezier_spline function. |
| A stack based buffer overflow was found in the virtio-net device of QEMU. This issue occurs when flushing TX in the virtio_net_flush_tx function if guest features VIRTIO_NET_F_HASH_REPORT, VIRTIO_F_VERSION_1 and VIRTIO_NET_F_MRG_RXBUF are enabled. This could allow a malicious user to overwrite local variables allocated on the stack. Specifically, the `out_sg` variable could be used to read a part of process memory and send it to the wire, causing an information leak. |
| A buffer overflow flaw was found in X.Org and Xwayland. The code in XkbVModMaskText() allocates a fixed-sized buffer on the stack and copies the names of the virtual modifiers to that buffer. The code fails to check the bounds of the buffer and would copy the data regardless of the size. |
| Redis is an open source, in-memory database that persists on disk. In versions 8.2.0 and above, a user can run the XACKDEL command with multiple ID's and trigger a stack buffer overflow, which may potentially lead to remote code execution. This issue is fixed in version 8.2.3. To workaround this issue without patching the redis-server executable is to prevent users from executing XACKDEL operation. This can be done using ACL to restrict XACKDEL command. |
| Totolink LR350 v9.3.5u.6369_B20220309 was discovered to contain a stack overflow via the http_host parameter in the sub_426EF8 function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Totolink LR350 v9.3.5u.6369_B20220309 was discovered to contain a stack overflow via the password parameter in the sub_426EF8 function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Totolink LR350 v9.3.5u.6369_B20220309 was discovered to contain a stack overflow via the ssid parameter in the sub_425400 function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Totolink LR350 v9.3.5u.6369_B20220309 was discovered to contain a stack overflow via the ssid parameter in the sub_421BAC function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Totolink A7000R v9.1.0u.6115_B20201022 was discovered to contain a stack overflow via the ssid5g parameter in the sub_4222E0 function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Totolink A7000R v9.1.0u.6115_B20201022 was discovered to contain a stack overflow via the ssid5g parameter in the urldecode function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Totolink A7000R v9.1.0u.6115_B20201022 was discovered to contain a stack overflow via the wifiOff parameter in the sub_421A04 function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Totolink LR350 v9.3.5u.6369_B20220309 was discovered to contain a stack overflow via the wifiOff parameter in the sub_4232EC function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Totolink LR350 v9.3.5u.6369_B20220309 was discovered to contain a stack overflow via the ssid parameter in the sub_42396C function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |