| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows UI XAML Maps MapControlSettings allows an authorized attacker to elevate privileges locally. |
| Integer overflow or wraparound in Windows SPNEGO Extended Negotiation allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
eeprom: at24: fix memory corruption race condition
If the eeprom is not accessible, an nvmem device will be registered, the
read will fail, and the device will be torn down. If another driver
accesses the nvmem device after the teardown, it will reference
invalid memory.
Move the failure point before registering the nvmem device. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4/pNFS: Fix a race to wake on NFS_LAYOUT_DRAIN
We found a few different systems hung up in writeback waiting on the same
page lock, and one task waiting on the NFS_LAYOUT_DRAIN bit in
pnfs_update_layout(), however the pnfs_layout_hdr's plh_outstanding count
was zero.
It seems most likely that this is another race between the waiter and waker
similar to commit ed0172af5d6f ("SUNRPC: Fix a race to wake a sync task").
Fix it up by applying the advised barrier. |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: fix vf may be used uninitialized in this function warning
To fix the regression introduced by commit 52424f974bc5, which causes
servers hang in very hard to reproduce conditions with resets races.
Using two sources for the information is the root cause.
In this function before the fix bumping v didn't mean bumping vf
pointer. But the code used this variables interchangeably, so stale vf
could point to different/not intended vf.
Remove redundant "v" variable and iterate via single VF pointer across
whole function instead to guarantee VF pointer validity. |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix garbage collector racing against connect()
Garbage collector does not take into account the risk of embryo getting
enqueued during the garbage collection. If such embryo has a peer that
carries SCM_RIGHTS, two consecutive passes of scan_children() may see a
different set of children. Leading to an incorrectly elevated inflight
count, and then a dangling pointer within the gc_inflight_list.
sockets are AF_UNIX/SOCK_STREAM
S is an unconnected socket
L is a listening in-flight socket bound to addr, not in fdtable
V's fd will be passed via sendmsg(), gets inflight count bumped
connect(S, addr) sendmsg(S, [V]); close(V) __unix_gc()
---------------- ------------------------- -----------
NS = unix_create1()
skb1 = sock_wmalloc(NS)
L = unix_find_other(addr)
unix_state_lock(L)
unix_peer(S) = NS
// V count=1 inflight=0
NS = unix_peer(S)
skb2 = sock_alloc()
skb_queue_tail(NS, skb2[V])
// V became in-flight
// V count=2 inflight=1
close(V)
// V count=1 inflight=1
// GC candidate condition met
for u in gc_inflight_list:
if (total_refs == inflight_refs)
add u to gc_candidates
// gc_candidates={L, V}
for u in gc_candidates:
scan_children(u, dec_inflight)
// embryo (skb1) was not
// reachable from L yet, so V's
// inflight remains unchanged
__skb_queue_tail(L, skb1)
unix_state_unlock(L)
for u in gc_candidates:
if (u.inflight)
scan_children(u, inc_inflight_move_tail)
// V count=1 inflight=2 (!)
If there is a GC-candidate listening socket, lock/unlock its state. This
makes GC wait until the end of any ongoing connect() to that socket. After
flipping the lock, a possibly SCM-laden embryo is already enqueued. And if
there is another embryo coming, it can not possibly carry SCM_RIGHTS. At
this point, unix_inflight() can not happen because unix_gc_lock is already
taken. Inflight graph remains unaffected. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: delay all of ath9k_wmi_event_tasklet() until init is complete
The ath9k_wmi_event_tasklet() used in ath9k_htc assumes that all the data
structures have been fully initialised by the time it runs. However, because of
the order in which things are initialised, this is not guaranteed to be the
case, because the device is exposed to the USB subsystem before the ath9k driver
initialisation is completed.
We already committed a partial fix for this in commit:
8b3046abc99e ("ath9k_htc: fix NULL pointer dereference at ath9k_htc_tx_get_packet()")
However, that commit only aborted the WMI_TXSTATUS_EVENTID command in the event
tasklet, pairing it with an "initialisation complete" bit in the TX struct. It
seems syzbot managed to trigger the race for one of the other commands as well,
so let's just move the existing synchronisation bit to cover the whole
tasklet (setting it at the end of ath9k_htc_probe_device() instead of inside
ath9k_tx_init()). |
| In the Linux kernel, the following vulnerability has been resolved:
netrom: Fix data-races around sysctl_net_busy_read
We need to protect the reader reading the sysctl value because the
value can be changed concurrently. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Shell allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Shell allows an authorized attacker to elevate privileges locally. |
| Use after free in Windows DirectX allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Microsoft Brokering File System allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/PM: Drain runtime-idle callbacks before driver removal
A race condition between the .runtime_idle() callback and the .remove()
callback in the rtsx_pcr PCI driver leads to a kernel crash due to an
unhandled page fault [1].
The problem is that rtsx_pci_runtime_idle() is not expected to be running
after pm_runtime_get_sync() has been called, but the latter doesn't really
guarantee that. It only guarantees that the suspend and resume callbacks
will not be running when it returns.
However, if a .runtime_idle() callback is already running when
pm_runtime_get_sync() is called, the latter will notice that the runtime PM
status of the device is RPM_ACTIVE and it will return right away without
waiting for the former to complete. In fact, it cannot wait for
.runtime_idle() to complete because it may be called from that callback (it
arguably does not make much sense to do that, but it is not strictly
prohibited).
Thus in general, whoever is providing a .runtime_idle() callback needs
to protect it from running in parallel with whatever code runs after
pm_runtime_get_sync(). [Note that .runtime_idle() will not start after
pm_runtime_get_sync() has returned, but it may continue running then if it
has started earlier.]
One way to address that race condition is to call pm_runtime_barrier()
after pm_runtime_get_sync() (not before it, because a nonzero value of the
runtime PM usage counter is necessary to prevent runtime PM callbacks from
being invoked) to wait for the .runtime_idle() callback to complete should
it be running at that point. A suitable place for doing that is in
pci_device_remove() which calls pm_runtime_get_sync() before removing the
driver, so it may as well call pm_runtime_barrier() subsequently, which
will prevent the race in question from occurring, not just in the rtsx_pcr
driver, but in any PCI drivers providing .runtime_idle() callbacks. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_qfq: Fix race condition on qfq_aggregate
A race condition can occur when 'agg' is modified in qfq_change_agg
(called during qfq_enqueue) while other threads access it
concurrently. For example, qfq_dump_class may trigger a NULL
dereference, and qfq_delete_class may cause a use-after-free.
This patch addresses the issue by:
1. Moved qfq_destroy_class into the critical section.
2. Added sch_tree_lock protection to qfq_dump_class and
qfq_dump_class_stats. |
| In the Linux kernel, the following vulnerability has been resolved:
interconnect: Don't access req_list while it's being manipulated
The icc_lock mutex was split into separate icc_lock and icc_bw_lock
mutexes in [1] to avoid lockdep splats. However, this didn't adequately
protect access to icc_node::req_list.
The icc_set_bw() function will eventually iterate over req_list while
only holding icc_bw_lock, but req_list can be modified while only
holding icc_lock. This causes races between icc_set_bw(), of_icc_get(),
and icc_put().
Example A:
CPU0 CPU1
---- ----
icc_set_bw(path_a)
mutex_lock(&icc_bw_lock);
icc_put(path_b)
mutex_lock(&icc_lock);
aggregate_requests()
hlist_for_each_entry(r, ...
hlist_del(...
<r = invalid pointer>
Example B:
CPU0 CPU1
---- ----
icc_set_bw(path_a)
mutex_lock(&icc_bw_lock);
path_b = of_icc_get()
of_icc_get_by_index()
mutex_lock(&icc_lock);
path_find()
path_init()
aggregate_requests()
hlist_for_each_entry(r, ...
hlist_add_head(...
<r = invalid pointer>
Fix this by ensuring icc_bw_lock is always held before manipulating
icc_node::req_list. The additional places icc_bw_lock is held don't
perform any memory allocations, so we should still be safe from the
original lockdep splats that motivated the separate locks.
[1] commit af42269c3523 ("interconnect: Fix locking for runpm vs reclaim") |
| Versa SASE Client for Windows versions released between 7.8.7 and 7.9.4 contain a local privilege escalation vulnerability in the audit log export functionality. The client communicates user-controlled file paths to a privileged service, which performs file system operations without impersonating the requesting user. Due to improper privilege handling and a time-of-check time-of-use race condition combined with symbolic link and mount point manipulation, a local authenticated attacker can coerce the service into deleting arbitrary directories with SYSTEM privileges. This can be exploited to delete protected system folders such as C:\\Config.msi and subsequently achieve execution as NT AUTHORITY\\SYSTEM via MSI rollback techniques. |
| Barracuda Service Center, as implemented in the RMM solution, in versions prior to 2025.1.1, does not verify the URL defined in an attacker-controlled WSDL that is later loaded by the application. This can lead to arbitrary file write and remote code execution via webshell upload. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race between quota enable and quota rescan ioctl
When enabling quotas, at btrfs_quota_enable(), after committing the
transaction, we change fs_info->quota_root to point to the quota root we
created and set BTRFS_FS_QUOTA_ENABLED at fs_info->flags. Then we try
to start the qgroup rescan worker, first by initializing it with a call
to qgroup_rescan_init() - however if that fails we end up freeing the
quota root but we leave fs_info->quota_root still pointing to it, this
can later result in a use-after-free somewhere else.
We have previously set the flags BTRFS_FS_QUOTA_ENABLED and
BTRFS_QGROUP_STATUS_FLAG_ON, so we can only fail with -EINPROGRESS at
btrfs_quota_enable(), which is possible if someone already called the
quota rescan ioctl, and therefore started the rescan worker.
So fix this by ignoring an -EINPROGRESS and asserting we can't get any
other error. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: dlm: fix race in lowcomms
This patch fixes a race between queue_work() in
_dlm_lowcomms_commit_msg() and srcu_read_unlock(). The queue_work() can
take the final reference of a dlm_msg and so msg->idx can contain
garbage which is signaled by the following warning:
[ 676.237050] ------------[ cut here ]------------
[ 676.237052] WARNING: CPU: 0 PID: 1060 at include/linux/srcu.h:189 dlm_lowcomms_commit_msg+0x41/0x50
[ 676.238945] Modules linked in: dlm_locktorture torture rpcsec_gss_krb5 intel_rapl_msr intel_rapl_common iTCO_wdt iTCO_vendor_support qxl kvm_intel drm_ttm_helper vmw_vsock_virtio_transport kvm vmw_vsock_virtio_transport_common ttm irqbypass crc32_pclmul joydev crc32c_intel serio_raw drm_kms_helper vsock virtio_scsi virtio_console virtio_balloon snd_pcm drm syscopyarea sysfillrect sysimgblt snd_timer fb_sys_fops i2c_i801 lpc_ich snd i2c_smbus soundcore pcspkr
[ 676.244227] CPU: 0 PID: 1060 Comm: lock_torture_wr Not tainted 5.19.0-rc3+ #1546
[ 676.245216] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-2.module+el8.7.0+15506+033991b0 04/01/2014
[ 676.246460] RIP: 0010:dlm_lowcomms_commit_msg+0x41/0x50
[ 676.247132] Code: fe ff ff ff 75 24 48 c7 c6 bd 0f 49 bb 48 c7 c7 38 7c 01 bd e8 00 e7 ca ff 89 de 48 c7 c7 60 78 01 bd e8 42 3d cd ff 5b 5d c3 <0f> 0b eb d8 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 55 48
[ 676.249253] RSP: 0018:ffffa401c18ffc68 EFLAGS: 00010282
[ 676.249855] RAX: 0000000000000001 RBX: 00000000ffff8b76 RCX: 0000000000000006
[ 676.250713] RDX: 0000000000000000 RSI: ffffffffbccf3a10 RDI: ffffffffbcc7b62e
[ 676.251610] RBP: ffffa401c18ffc70 R08: 0000000000000001 R09: 0000000000000001
[ 676.252481] R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000005
[ 676.253421] R13: ffff8b76786ec370 R14: ffff8b76786ec370 R15: ffff8b76786ec480
[ 676.254257] FS: 0000000000000000(0000) GS:ffff8b7777800000(0000) knlGS:0000000000000000
[ 676.255239] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 676.255897] CR2: 00005590205d88b8 CR3: 000000017656c003 CR4: 0000000000770ee0
[ 676.256734] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 676.257567] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 676.258397] PKRU: 55555554
[ 676.258729] Call Trace:
[ 676.259063] <TASK>
[ 676.259354] dlm_midcomms_commit_mhandle+0xcc/0x110
[ 676.259964] queue_bast+0x8b/0xb0
[ 676.260423] grant_pending_locks+0x166/0x1b0
[ 676.261007] _unlock_lock+0x75/0x90
[ 676.261469] unlock_lock.isra.57+0x62/0xa0
[ 676.262009] dlm_unlock+0x21e/0x330
[ 676.262457] ? lock_torture_stats+0x80/0x80 [dlm_locktorture]
[ 676.263183] torture_unlock+0x5a/0x90 [dlm_locktorture]
[ 676.263815] ? preempt_count_sub+0xba/0x100
[ 676.264361] ? complete+0x1d/0x60
[ 676.264777] lock_torture_writer+0xb8/0x150 [dlm_locktorture]
[ 676.265555] kthread+0x10a/0x130
[ 676.266007] ? kthread_complete_and_exit+0x20/0x20
[ 676.266616] ret_from_fork+0x22/0x30
[ 676.267097] </TASK>
[ 676.267381] irq event stamp: 9579855
[ 676.267824] hardirqs last enabled at (9579863): [<ffffffffbb14e6f8>] __up_console_sem+0x58/0x60
[ 676.268896] hardirqs last disabled at (9579872): [<ffffffffbb14e6dd>] __up_console_sem+0x3d/0x60
[ 676.270008] softirqs last enabled at (9579798): [<ffffffffbc200349>] __do_softirq+0x349/0x4c7
[ 676.271438] softirqs last disabled at (9579897): [<ffffffffbb0d54c0>] irq_exit_rcu+0xb0/0xf0
[ 676.272796] ---[ end trace 0000000000000000 ]---
I reproduced this warning with dlm_locktorture test which is currently
not upstream. However this patch fix the issue by make a additional
refcount between dlm_lowcomms_new_msg() and dlm_lowcomms_commit_msg().
In case of the race the kref_put() in dlm_lowcomms_commit_msg() will be
the final put. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix warning in ext4_iomap_begin as race between bmap and write
We got issue as follows:
------------[ cut here ]------------
WARNING: CPU: 3 PID: 9310 at fs/ext4/inode.c:3441 ext4_iomap_begin+0x182/0x5d0
RIP: 0010:ext4_iomap_begin+0x182/0x5d0
RSP: 0018:ffff88812460fa08 EFLAGS: 00010293
RAX: ffff88811f168000 RBX: 0000000000000000 RCX: ffffffff97793c12
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003
RBP: ffff88812c669160 R08: ffff88811f168000 R09: ffffed10258cd20f
R10: ffff88812c669077 R11: ffffed10258cd20e R12: 0000000000000001
R13: 00000000000000a4 R14: 000000000000000c R15: ffff88812c6691ee
FS: 00007fd0d6ff3740(0000) GS:ffff8883af180000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fd0d6dda290 CR3: 0000000104a62000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
iomap_apply+0x119/0x570
iomap_bmap+0x124/0x150
ext4_bmap+0x14f/0x250
bmap+0x55/0x80
do_vfs_ioctl+0x952/0xbd0
__x64_sys_ioctl+0xc6/0x170
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Above issue may happen as follows:
bmap write
bmap
ext4_bmap
iomap_bmap
ext4_iomap_begin
ext4_file_write_iter
ext4_buffered_write_iter
generic_perform_write
ext4_da_write_begin
ext4_da_write_inline_data_begin
ext4_prepare_inline_data
ext4_create_inline_data
ext4_set_inode_flag(inode,
EXT4_INODE_INLINE_DATA);
if (WARN_ON_ONCE(ext4_has_inline_data(inode))) ->trigger bug_on
To solved above issue hold inode lock in ext4_bamp. |