CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
An unauthenticated network-based attacker able to send a maliciously crafted LLDP packet to the local segment, through a local segment broadcast, may be able to cause a Junos device to enter an improper boundary check condition allowing a memory corruption to occur, leading to a denial of service. Further crafted packets may be able to sustain the denial of service condition. Score: 6.5 MEDIUM (CVSS:3.0/AV:A/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H) Further, if the attacker is authenticated on the target device receiving and processing the malicious LLDP packet, while receiving the crafted packets, the attacker may be able to perform command or arbitrary code injection over the target device thereby elevating their permissions and privileges, and taking control of the device. Score: 7.8 HIGH (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H) An unauthenticated network-based attacker able to send a maliciously crafted LLDP packet to one or more local segments, via LLDP proxy / tunneling agents or other LLDP through Layer 3 deployments, through one or more local segment broadcasts, may be able to cause multiple Junos devices to enter an improper boundary check condition allowing a memory corruption to occur, leading to multiple distributed Denials of Services. These Denials of Services attacks may have cascading Denials of Services to adjacent connected devices, impacts network devices, servers, workstations, etc. Further crafted packets may be able to sustain these Denials of Services conditions. Score 6.8 MEDIUM (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:C/C:N/I:N/A:H) Further, if the attacker is authenticated on one or more target devices receiving and processing these malicious LLDP packets, while receiving the crafted packets, the attacker may be able to perform command or arbitrary code injection over multiple target devices thereby elevating their permissions and privileges, and taking control multiple devices. Score: 7.8 HIGH (CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H) Affected releases are Juniper Networks Junos OS: 12.1X46 versions prior to 12.1X46-D71; 12.3 versions prior to 12.3R12-S7; 12.3X48 versions prior to 12.3X48-D55; 14.1 versions prior to 14.1R8-S5, 14.1R9; 14.1X53 versions prior to 14.1X53-D46, 14.1X53-D50, 14.1X53-D107; 14.2 versions prior to 14.2R7-S9, 14.2R8; 15.1 versions prior to 15.1F2-S17, 15.1F5-S8, 15.1F6-S8, 15.1R5-S7, 15.1R7; 15.1X49 versions prior to 15.1X49-D90; 15.1X53 versions prior to 15.1X53-D65; 16.1 versions prior to 16.1R4-S6, 16.1R5; 16.1X65 versions prior to 16.1X65-D45; 16.2 versions prior to 16.2R2; 17.1 versions prior to 17.1R2. No other Juniper Networks products or platforms are affected by this issue. |
A high rate of VLAN authentication attempts sent from an adjacent host on the local broadcast domain can trigger high memory utilization by the BBE subscriber management daemon (bbe-smgd), and lead to a denial of service condition. The issue was caused by attempting to process an unbounded number of pending VLAN authentication requests, leading to excessive memory allocation. This issue only affects devices configured for DHCPv4/v6 over AE auto-sensed VLANs, utilized in Broadband Edge (BBE) deployments. Other configurations are unaffected by this issue. Affected releases are Juniper Networks Junos OS: 15.1 versions prior to 15.1R6-S2, 15.1R7; 16.1 versions prior to 16.1R5-S1, 16.1R6; 16.2 versions prior to 16.2R2-S2, 16.2R3; 17.1 versions prior to 17.1R2-S5, 17.1R3; 17.2 versions prior to 17.2R2. |
An issue was discovered on Vera VeraEdge 1.7.19 and Veralite 1.7.481 devices. The device provides a web user interface that allows a user to manage the device. As a part of the functionality the device firmware file contains a file known as proxy.sh which allows the device to proxy a specific request to and from from another website. This is primarily used as a method of communication between the device and Vera website when the user is logged in to the https://home.getvera.com and allows the device to communicate between the device and website. One of the parameters retrieved by this specific script is "url". This parameter is not sanitized by the script correctly and is passed in a call to "eval" to execute "curl" functionality. This allows an attacker to escape from the executed command and then execute any commands of his/her choice. |
An issue was discovered on Vera VeraEdge 1.7.19 and Veralite 1.7.481 devices. The device provides a web user interface that allows a user to manage the device. As a part of the functionality the device firmware file contains a file known as relay.sh which allows the device to create relay ports and connect the device to Vera servers. This is primarily used as a method of communication between the device and Vera servers so the devices can be communicated with even when the user is not at home. One of the parameters retrieved by this specific script is "remote_host". This parameter is not sanitized by the script correctly and is passed in a call to "eval" to execute another script where remote_host is concatenated to be passed a parameter to the second script. This allows an attacker to escape from the executed command and then execute any commands of his/her choice. |
An issue was discovered on D-Link DCS-1100 and DCS-1130 devices. The device runs a custom daemon on UDP port 5978 which is called "dldps2121" and listens for broadcast packets sent on 255.255.255.255. This daemon handles custom D-Link UDP based protocol that allows D-Link mobile applications and desktop applications to discover D-Link devices on the local network. The binary processes the received UDP packets sent from any device in "main" function. One path in the function traverses towards a block of code that handles commands to be executed on the device. The custom protocol created by D-Link follows the following pattern: Packetlen, Type of packet; M=MAC address of device or broadcast; D=Device Type;C=base64 encoded command string;test=1111. If a packet is received with the packet type being "S" or 0x53 then the string passed in the "C" parameter is base64 decoded and then executed by passing into a System API. We can see at address 0x00009B44 that the string received in packet type subtracts 0x31 or "1" from the packet type and is compared against 0x22 or "double quotes". If that is the case, then the packet is sent towards the block of code that executes a command. Then the value stored in "C" parameter is extracted at address 0x0000A1B0. Finally, the string received is base 64 decoded and passed on to the system API at address 0x0000A2A8 as shown below. The same form of communication can be initiated by any process including an attacker process on the mobile phone or the desktop and this allows a third-party application on the device to execute commands on the device without any authentication by sending just 1 UDP packet with custom base64 encoding. |
An issue was discovered on D-Link DCS-1130 devices. The device provides a user with the capability of setting a SMB folder for the video clippings recorded by the device. It seems that the POST parameters passed in this request (to test if email credentials and hostname sent to the device work properly) result in being passed as commands to a "system" API in the function and thus result in command injection on the device. If the firmware version is dissected using binwalk tool, we obtain a cramfs-root archive which contains the filesystem set up on the device that contains all the binaries. The library "libmailutils.so" is the one that has the vulnerable function "sub_1FC4" that receives the values sent by the POST request. If we open this binary in IDA-pro we will notice that this follows an ARM little endian format. The function sub_1FC4 in IDA pro is identified to be receiving the values sent in the POST request and the value set in POST parameter "receiver1" is extracted in function "sub_15AC" which is then passed to the vulnerable system API call. The vulnerable library function is accessed in "cgibox" binary at address 0x00023BCC which calls the "Send_mail" function in "libmailutils.so" binary as shown below which results in the vulnerable POST parameter being passed to the library which results in the command injection issue. |
An issue was discovered on D-Link DCS-1130 devices. The device provides a user with the capability of setting a SMB folder for the video clippings recorded by the device. It seems that the GET parameters passed in this request (to test if SMB credentials and hostname sent to the device work properly) result in being passed as commands to a "system" API in the function and thus result in command injection on the device. If the firmware version is dissected using binwalk tool, we obtain a cramfs-root archive which contains the filesystem set up on the device that contains all the binaries. The binary "cgibox" is the one that has the vulnerable function "sub_7EAFC" that receives the values sent by the GET request. If we open this binary in IDA-pro we will notice that this follows a ARM little endian format. The function sub_7EAFC in IDA pro is identified to be receiving the values sent in the GET request and the value set in GET parameter "user" is extracted in function sub_7E49C which is then passed to the vulnerable system API call. |
An issue was discovered on D-Link DCS-1130 devices. The device provides a user with the capability of setting a SMB folder for the video clippings recorded by the device. It seems that the POST parameters passed in this request (to test if email credentials and hostname sent to the device work properly) result in being passed as commands to a "system" API in the function and thus result in command injection on the device. If the firmware version is dissected using binwalk tool, we obtain a cramfs-root archive which contains the filesystem set up on the device that contains all the binaries. The library "libmailutils.so" is the one that has the vulnerable function "sub_1FC4" that receives the values sent by the POST request. If we open this binary in IDA-pro we will notice that this follows an ARM little endian format. The function sub_1FC4 in IDA pro is identified to be receiving the values sent in the POST request and the value set in POST parameter "receiver1" is extracted in function "sub_15AC" which is then passed to the vulnerable system API call. The vulnerable library function is accessed in "cgibox" binary at address 0x0008F598 which calls the "mailLoginTest" function in "libmailutils.so" binary as shown below which results in the vulnerable POST parameter being passed to the library which results in the command injection issue. |
An issue was discovered on Securifi Almond, Almond+, and Almond 2015 devices with firmware AL-R096. The device provides a user with the capability of adding new routes to the device. It seems that the POST parameters passed in this request to set up routes on the device can be set in such a way that would result in passing commands to a "popen" API in the function and thus result in command injection on the device. If the firmware version AL-R096 is dissected using binwalk tool, we obtain a cpio-root archive which contains the filesystem set up on the device that contains all the binaries. The binary "goahead" is the one that has the vulnerable function that receives the values sent by the POST request. If we open this binary in IDA-pro we will notice that this follows a MIPS little endian format. The function sub_00420F38 in IDA pro is identified to be receiving the values sent in the POST request and the value set in POST parameter "dest" is extracted at address 0x00420FC4. The POST parameter "dest is concatenated in a route add command and this is passed to a "popen" function at address 0x00421220. This allows an attacker to provide the payload of his/her choice and finally take control of the device. |
An issue was discovered on Securifi Almond, Almond+, and Almond 2015 devices with firmware AL-R096. The device provides a user with the capability of adding new port forwarding rules to the device. It seems that the POST parameters passed in this request to set up routes on the device can be set in such a way that would result in passing commands to a "system" API in the function and thus result in command injection on the device. If the firmware version AL-R096 is dissected using binwalk tool, we obtain a cpio-root archive which contains the filesystem set up on the device that contains all the binaries. The binary "goahead" is the one that has the vulnerable function that recieves the values sent by the POST request. If we open this binary in IDA-pro we will notice that this follows a MIPS little endian format. The function sub_43C280in IDA pro is identified to be receiving the values sent in the POST request and the value set in POST parameter "ip_address" is extracted at address 0x0043C2F0. The POST parameter "ipaddress" is concatenated at address 0x0043C958 and this is passed to a "system" function at address 0x00437284. This allows an attacker to provide the payload of his/her choice and finally take control of the device. |
JavaScript in the "about:webrtc" page is not sanitized properly being assigned to "innerHTML". Data on this page is supplied by WebRTC usage and is not under third-party control, making this difficult to exploit, but the vulnerability could possibly be used for a cross-site scripting (XSS) attack. This vulnerability affects Firefox < 55. |
The Developer Tools feature suffers from a XUL injection vulnerability due to improper sanitization of the web page source code. In the worst case, this could allow arbitrary code execution when opening a malicious page with the style editor tool. This vulnerability affects Firefox ESR < 52.3 and Firefox < 55. |
In Eclipse Mosquitto 1.4.15 and earlier, a Memory Leak vulnerability was found within the Mosquitto Broker. Unauthenticated clients can send crafted CONNECT packets which could cause a denial of service in the Mosquitto Broker. |
An issue was discovered in certain Apple products. Safari before 11.0.2 is affected. The issue involves the "WebKit Web Inspector" component. It allows remote attackers to execute arbitrary code via special characters that trigger command injection. |
An error in the "read_metadata_vorbiscomment_()" function (src/libFLAC/stream_decoder.c) in FLAC version 1.3.2 can be exploited to cause a memory leak via a specially crafted FLAC file. |
A STUN server in conjunction with a large number of "webkitRTCPeerConnection" objects can be used to send large STUN packets in a short period of time due to a lack of rate limiting being applied on e10s systems, allowing for a denial of service attack. This vulnerability affects Firefox < 51. |
A vulnerability stemming from failure to properly clean up closed OMAPI connections can lead to exhaustion of the pool of socket descriptors available to the DHCP server. Affects ISC DHCP 4.1.0 to 4.1-ESV-R15, 4.2.0 to 4.2.8, 4.3.0 to 4.3.6. Older versions may also be affected but are well beyond their end-of-life (EOL). Releases prior to 4.1.0 have not been tested. |
An exploitable command injection vulnerability exists in the web management interface used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.37. A specially crafted HTTP request can allow for a user to inject arbitrary shell characters resulting in command injection during the boot process. To trigger this vulnerability, an attacker needs to send an HTTP request and reboot the device. |
An exploitable command injection vulnerability exists in the web management interface used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.37. A specially crafted HTTP request can allow for a user to inject arbitrary shell characters during a password change resulting in command injection. An attacker can simply send an HTTP request to the device to trigger this vulnerability. |
jenkins before versions 2.44, 2.32.2 is vulnerable to a user creation CSRF using GET by admins. While this user record was only retained until restart in most cases, administrators' web browsers could be manipulated to create a large number of user records (SECURITY-406). |