CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
clk: imx: clk-imx8mn: fix memory leak in imx8mn_clocks_probe
Use devm_of_iomap() instead of of_iomap() to automatically handle
the unused ioremap region.
If any error occurs, regions allocated by kzalloc() will leak,
but using devm_kzalloc() instead will automatically free the memory
using devm_kfree(). |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: pcie: fix NULL pointer dereference in iwl_pcie_irq_rx_msix_handler()
rxq can be NULL only when trans_pcie->rxq is NULL and entry->entry
is zero. For the case when entry->entry is not equal to 0, rxq
won't be NULL even if trans_pcie->rxq is NULL. Modify checker to
check for trans_pcie->rxq. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: check S1G action frame size
Before checking the action code, check that it even
exists in the frame. |
In the Linux kernel, the following vulnerability has been resolved:
coresight: Fix memory leak in acpi_buffer->pointer
There are memory leaks reported by kmemleak:
...
unreferenced object 0xffff00213c141000 (size 1024):
comm "systemd-udevd", pid 2123, jiffies 4294909467 (age 6062.160s)
hex dump (first 32 bytes):
04 00 00 00 02 00 00 00 18 10 14 3c 21 00 ff ff ...........<!...
00 00 00 00 00 00 00 00 03 00 00 00 10 00 00 00 ................
backtrace:
[<000000004b7c9001>] __kmem_cache_alloc_node+0x2f8/0x348
[<00000000b0fc7ceb>] __kmalloc+0x58/0x108
[<0000000064ff4695>] acpi_os_allocate+0x2c/0x68
[<000000007d57d116>] acpi_ut_initialize_buffer+0x54/0xe0
[<0000000024583908>] acpi_evaluate_object+0x388/0x438
[<0000000017b2e72b>] acpi_evaluate_object_typed+0xe8/0x240
[<000000005df0eac2>] coresight_get_platform_data+0x1b4/0x988 [coresight]
...
The ACPI buffer memory (buf.pointer) should be freed. But the buffer
is also used after returning from acpi_get_dsd_graph().
Move the temporary variables buf to acpi_coresight_parse_graph(),
and free it before the function return to prevent memory leak. |
Insufficiently specific bounds checking on authorization header could lead to denial of service in the Temporal server on all platforms due to excessive memory allocation.This issue affects all platforms and versions of OSS Server prior to 1.26.3, 1.27.3, and 1.28.1 (i.e., fixed in 1.26.3, 1.27.3, and 1.28.1 and later). Temporal Cloud services are not impacted. |
In the Linux kernel, the following vulnerability has been resolved:
xen/gntdev: Prevent leaking grants
Prior to this commit, if a grant mapping operation failed partially,
some of the entries in the map_ops array would be invalid, whereas all
of the entries in the kmap_ops array would be valid. This in turn would
cause the following logic in gntdev_map_grant_pages to become invalid:
for (i = 0; i < map->count; i++) {
if (map->map_ops[i].status == GNTST_okay) {
map->unmap_ops[i].handle = map->map_ops[i].handle;
if (!use_ptemod)
alloced++;
}
if (use_ptemod) {
if (map->kmap_ops[i].status == GNTST_okay) {
if (map->map_ops[i].status == GNTST_okay)
alloced++;
map->kunmap_ops[i].handle = map->kmap_ops[i].handle;
}
}
}
...
atomic_add(alloced, &map->live_grants);
Assume that use_ptemod is true (i.e., the domain mapping the granted
pages is a paravirtualized domain). In the code excerpt above, note that
the "alloced" variable is only incremented when both kmap_ops[i].status
and map_ops[i].status are set to GNTST_okay (i.e., both mapping
operations are successful). However, as also noted above, there are
cases where a grant mapping operation fails partially, breaking the
assumption of the code excerpt above.
The aforementioned causes map->live_grants to be incorrectly set. In
some cases, all of the map_ops mappings fail, but all of the kmap_ops
mappings succeed, meaning that live_grants may remain zero. This in turn
makes it impossible to unmap the successfully grant-mapped pages pointed
to by kmap_ops, because unmap_grant_pages has the following snippet of
code at its beginning:
if (atomic_read(&map->live_grants) == 0)
return; /* Nothing to do */
In other cases where only some of the map_ops mappings fail but all
kmap_ops mappings succeed, live_grants is made positive, but when the
user requests unmapping the grant-mapped pages, __unmap_grant_pages_done
will then make map->live_grants negative, because the latter function
does not check if all of the pages that were requested to be unmapped
were actually unmapped, and the same function unconditionally subtracts
"data->count" (i.e., a value that can be greater than map->live_grants)
from map->live_grants. The side effects of a negative live_grants value
have not been studied.
The net effect of all of this is that grant references are leaked in one
of the above conditions. In Qubes OS v4.1 (which uses Xen's grant
mechanism extensively for X11 GUI isolation), this issue manifests
itself with warning messages like the following to be printed out by the
Linux kernel in the VM that had granted pages (that contain X11 GUI
window data) to dom0: "g.e. 0x1234 still pending", especially after the
user rapidly resizes GUI VM windows (causing some grant-mapping
operations to partially or completely fail, due to the fact that the VM
unshares some of the pages as part of the window resizing, making the
pages impossible to grant-map from dom0).
The fix for this issue involves counting all successful map_ops and
kmap_ops mappings separately, and then adding the sum to live_grants.
During unmapping, only the number of successfully unmapped grants is
subtracted from live_grants. The code is also modified to check for
negative live_grants values after the subtraction and warn the user. |
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: fix race in sock_map_free()
sock_map_free() calls release_sock(sk) without owning a reference
on the socket. This can cause use-after-free as syzbot found [1]
Jakub Sitnicki already took care of a similar issue
in sock_hash_free() in commit 75e68e5bf2c7 ("bpf, sockhash:
Synchronize delete from bucket list on map free")
[1]
refcount_t: decrement hit 0; leaking memory.
WARNING: CPU: 0 PID: 3785 at lib/refcount.c:31 refcount_warn_saturate+0x17c/0x1a0 lib/refcount.c:31
Modules linked in:
CPU: 0 PID: 3785 Comm: kworker/u4:6 Not tainted 6.1.0-rc7-syzkaller-00103-gef4d3ea40565 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
Workqueue: events_unbound bpf_map_free_deferred
RIP: 0010:refcount_warn_saturate+0x17c/0x1a0 lib/refcount.c:31
Code: 68 8b 31 c0 e8 75 71 15 fd 0f 0b e9 64 ff ff ff e8 d9 6e 4e fd c6 05 62 9c 3d 0a 01 48 c7 c7 80 bb 68 8b 31 c0 e8 54 71 15 fd <0f> 0b e9 43 ff ff ff 89 d9 80 e1 07 80 c1 03 38 c1 0f 8c a2 fe ff
RSP: 0018:ffffc9000456fb60 EFLAGS: 00010246
RAX: eae59bab72dcd700 RBX: 0000000000000004 RCX: ffff8880207057c0
RDX: 0000000000000000 RSI: 0000000000000201 RDI: 0000000000000000
RBP: 0000000000000004 R08: ffffffff816fdabd R09: fffff520008adee5
R10: fffff520008adee5 R11: 1ffff920008adee4 R12: 0000000000000004
R13: dffffc0000000000 R14: ffff88807b1c6c00 R15: 1ffff1100f638dcf
FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b30c30000 CR3: 000000000d08e000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__refcount_dec include/linux/refcount.h:344 [inline]
refcount_dec include/linux/refcount.h:359 [inline]
__sock_put include/net/sock.h:779 [inline]
tcp_release_cb+0x2d0/0x360 net/ipv4/tcp_output.c:1092
release_sock+0xaf/0x1c0 net/core/sock.c:3468
sock_map_free+0x219/0x2c0 net/core/sock_map.c:356
process_one_work+0x81c/0xd10 kernel/workqueue.c:2289
worker_thread+0xb14/0x1330 kernel/workqueue.c:2436
kthread+0x266/0x300 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
drm/sti: Fix return type of sti_{dvo,hda,hdmi}_connector_mode_valid()
With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG),
indirect call targets are validated against the expected function
pointer prototype to make sure the call target is valid to help mitigate
ROP attacks. If they are not identical, there is a failure at run time,
which manifests as either a kernel panic or thread getting killed. A
proposed warning in clang aims to catch these at compile time, which
reveals:
drivers/gpu/drm/sti/sti_hda.c:637:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict]
.mode_valid = sti_hda_connector_mode_valid,
^~~~~~~~~~~~~~~~~~~~~~~~~~~~
drivers/gpu/drm/sti/sti_dvo.c:376:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict]
.mode_valid = sti_dvo_connector_mode_valid,
^~~~~~~~~~~~~~~~~~~~~~~~~~~~
drivers/gpu/drm/sti/sti_hdmi.c:1035:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict]
.mode_valid = sti_hdmi_connector_mode_valid,
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
->mode_valid() in 'struct drm_connector_helper_funcs' expects a return
type of 'enum drm_mode_status', not 'int'. Adjust the return type of
sti_{dvo,hda,hdmi}_connector_mode_valid() to match the prototype's to
resolve the warning and CFI failure. |
In the Linux kernel, the following vulnerability has been resolved:
vdpasim: fix memory leak when freeing IOTLBs
After commit bda324fd037a ("vdpasim: control virtqueue support"),
vdpasim->iommu became an array of IOTLB, so we should clean the
mappings of each free one by one instead of just deleting the ranges
in the first IOTLB which may leak maps. |
In the Linux kernel, the following vulnerability has been resolved:
kcm: annotate data-races around kcm->rx_wait
kcm->rx_psock can be read locklessly in kcm_rfree().
Annotate the read and writes accordingly.
syzbot reported:
BUG: KCSAN: data-race in kcm_rcv_strparser / kcm_rfree
write to 0xffff88810784e3d0 of 1 bytes by task 1823 on cpu 1:
reserve_rx_kcm net/kcm/kcmsock.c:283 [inline]
kcm_rcv_strparser+0x250/0x3a0 net/kcm/kcmsock.c:363
__strp_recv+0x64c/0xd20 net/strparser/strparser.c:301
strp_recv+0x6d/0x80 net/strparser/strparser.c:335
tcp_read_sock+0x13e/0x5a0 net/ipv4/tcp.c:1703
strp_read_sock net/strparser/strparser.c:358 [inline]
do_strp_work net/strparser/strparser.c:406 [inline]
strp_work+0xe8/0x180 net/strparser/strparser.c:415
process_one_work+0x3d3/0x720 kernel/workqueue.c:2289
worker_thread+0x618/0xa70 kernel/workqueue.c:2436
kthread+0x1a9/0x1e0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
read to 0xffff88810784e3d0 of 1 bytes by task 17869 on cpu 0:
kcm_rfree+0x121/0x220 net/kcm/kcmsock.c:181
skb_release_head_state+0x8e/0x160 net/core/skbuff.c:841
skb_release_all net/core/skbuff.c:852 [inline]
__kfree_skb net/core/skbuff.c:868 [inline]
kfree_skb_reason+0x5c/0x260 net/core/skbuff.c:891
kfree_skb include/linux/skbuff.h:1216 [inline]
kcm_recvmsg+0x226/0x2b0 net/kcm/kcmsock.c:1161
____sys_recvmsg+0x16c/0x2e0
___sys_recvmsg net/socket.c:2743 [inline]
do_recvmmsg+0x2f1/0x710 net/socket.c:2837
__sys_recvmmsg net/socket.c:2916 [inline]
__do_sys_recvmmsg net/socket.c:2939 [inline]
__se_sys_recvmmsg net/socket.c:2932 [inline]
__x64_sys_recvmmsg+0xde/0x160 net/socket.c:2932
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x01 -> 0x00
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 17869 Comm: syz-executor.2 Not tainted 6.1.0-rc1-syzkaller-00010-gbb1a1146467a-dirty #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022 |
In the Linux kernel, the following vulnerability has been resolved:
mmc: rtsx_pci: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and calling mmc_free_host() in the
error path, beside, runtime PM also needs be disabled. |
In the Linux kernel, the following vulnerability has been resolved:
drm/vkms: Fix memory leak in vkms_init()
A memory leak was reported after the vkms module install failed.
unreferenced object 0xffff88810bc28520 (size 16):
comm "modprobe", pid 9662, jiffies 4298009455 (age 42.590s)
hex dump (first 16 bytes):
01 01 00 64 81 88 ff ff 00 00 dc 0a 81 88 ff ff ...d............
backtrace:
[<00000000e7561ff8>] kmalloc_trace+0x27/0x60
[<000000000b1954a0>] 0xffffffffc45200a9
[<00000000abbf1da0>] do_one_initcall+0xd0/0x4f0
[<000000001505ee87>] do_init_module+0x1a4/0x680
[<00000000958079ad>] load_module+0x6249/0x7110
[<00000000117e4696>] __do_sys_finit_module+0x140/0x200
[<00000000f74b12d2>] do_syscall_64+0x35/0x80
[<000000008fc6fcde>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
The reason is that the vkms_init() returns without checking the return
value of vkms_create(), and if the vkms_create() failed, the config
allocated at the beginning of vkms_init() is leaked.
vkms_init()
config = kmalloc(...) # config allocated
...
return vkms_create() # vkms_create failed and config is leaked
Fix this problem by checking return value of vkms_create() and free the
config if error happened. |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix the assign logic of iocb
commit 18ae8d12991b ("f2fs: show more DIO information in tracepoint")
introduces iocb field in 'f2fs_direct_IO_enter' trace event
And it only assigns the pointer and later it accesses its field
in trace print log.
Unable to handle kernel paging request at virtual address ffffffc04cef3d30
Mem abort info:
ESR = 0x96000007
EC = 0x25: DABT (current EL), IL = 32 bits
pc : trace_raw_output_f2fs_direct_IO_enter+0x54/0xa4
lr : trace_raw_output_f2fs_direct_IO_enter+0x2c/0xa4
sp : ffffffc0443cbbd0
x29: ffffffc0443cbbf0 x28: ffffff8935b120d0 x27: ffffff8935b12108
x26: ffffff8935b120f0 x25: ffffff8935b12100 x24: ffffff8935b110c0
x23: ffffff8935b10000 x22: ffffff88859a936c x21: ffffff88859a936c
x20: ffffff8935b110c0 x19: ffffff8935b10000 x18: ffffffc03b195060
x17: ffffff8935b11e76 x16: 00000000000000cc x15: ffffffef855c4f2c
x14: 0000000000000001 x13: 000000000000004e x12: ffff0000ffffff00
x11: ffffffef86c350d0 x10: 00000000000010c0 x9 : 000000000fe0002c
x8 : ffffffc04cef3d28 x7 : 7f7f7f7f7f7f7f7f x6 : 0000000002000000
x5 : ffffff8935b11e9a x4 : 0000000000006250 x3 : ffff0a00ffffff04
x2 : 0000000000000002 x1 : ffffffef86a0a31f x0 : ffffff8935b10000
Call trace:
trace_raw_output_f2fs_direct_IO_enter+0x54/0xa4
print_trace_fmt+0x9c/0x138
print_trace_line+0x154/0x254
tracing_read_pipe+0x21c/0x380
vfs_read+0x108/0x3ac
ksys_read+0x7c/0xec
__arm64_sys_read+0x20/0x30
invoke_syscall+0x60/0x150
el0_svc_common.llvm.1237943816091755067+0xb8/0xf8
do_el0_svc+0x28/0xa0
Fix it by copying the required variables for printing and while at
it fix the similar issue at some other places in the same file. |
In the Linux kernel, the following vulnerability has been resolved:
vhost/vsock: Use kvmalloc/kvfree for larger packets.
When copying a large file over sftp over vsock, data size is usually 32kB,
and kmalloc seems to fail to try to allocate 32 32kB regions.
vhost-5837: page allocation failure: order:4, mode:0x24040c0
Call Trace:
[<ffffffffb6a0df64>] dump_stack+0x97/0xdb
[<ffffffffb68d6aed>] warn_alloc_failed+0x10f/0x138
[<ffffffffb68d868a>] ? __alloc_pages_direct_compact+0x38/0xc8
[<ffffffffb664619f>] __alloc_pages_nodemask+0x84c/0x90d
[<ffffffffb6646e56>] alloc_kmem_pages+0x17/0x19
[<ffffffffb6653a26>] kmalloc_order_trace+0x2b/0xdb
[<ffffffffb66682f3>] __kmalloc+0x177/0x1f7
[<ffffffffb66e0d94>] ? copy_from_iter+0x8d/0x31d
[<ffffffffc0689ab7>] vhost_vsock_handle_tx_kick+0x1fa/0x301 [vhost_vsock]
[<ffffffffc06828d9>] vhost_worker+0xf7/0x157 [vhost]
[<ffffffffb683ddce>] kthread+0xfd/0x105
[<ffffffffc06827e2>] ? vhost_dev_set_owner+0x22e/0x22e [vhost]
[<ffffffffb683dcd1>] ? flush_kthread_worker+0xf3/0xf3
[<ffffffffb6eb332e>] ret_from_fork+0x4e/0x80
[<ffffffffb683dcd1>] ? flush_kthread_worker+0xf3/0xf3
Work around by doing kvmalloc instead. |
In the Linux kernel, the following vulnerability has been resolved:
media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()
Wei Chen reports a kernel bug as blew:
general protection fault, probably for non-canonical address
KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017]
...
Call Trace:
<TASK>
__i2c_transfer+0x77e/0x1930 drivers/i2c/i2c-core-base.c:2109
i2c_transfer+0x1d5/0x3d0 drivers/i2c/i2c-core-base.c:2170
i2cdev_ioctl_rdwr+0x393/0x660 drivers/i2c/i2c-dev.c:297
i2cdev_ioctl+0x75d/0x9f0 drivers/i2c/i2c-dev.c:458
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl+0xfb/0x170 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7fd834a8bded
In az6027_i2c_xfer(), if msg[i].addr is 0x99,
a null-ptr-deref will caused when accessing msg[i].buf.
For msg[i].len is 0 and msg[i].buf is null.
Fix this by checking msg[i].len in az6027_i2c_xfer(). |
In the Linux kernel, the following vulnerability has been resolved:
media: dvbdev: adopts refcnt to avoid UAF
dvb_unregister_device() is known that prone to use-after-free.
That is, the cleanup from dvb_unregister_device() releases the dvb_device
even if there are pointers stored in file->private_data still refer to it.
This patch adds a reference counter into struct dvb_device and delays its
deallocation until no pointer refers to the object. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: don't allow journal inode to have encrypt flag
Mounting a filesystem whose journal inode has the encrypt flag causes a
NULL dereference in fscrypt_limit_io_blocks() when the 'inlinecrypt'
mount option is used.
The problem is that when jbd2_journal_init_inode() calls bmap(), it
eventually finds its way into ext4_iomap_begin(), which calls
fscrypt_limit_io_blocks(). fscrypt_limit_io_blocks() requires that if
the inode is encrypted, then its encryption key must already be set up.
That's not the case here, since the journal inode is never "opened" like
a normal file would be. Hence the crash.
A reproducer is:
mkfs.ext4 -F /dev/vdb
debugfs -w /dev/vdb -R "set_inode_field <8> flags 0x80808"
mount /dev/vdb /mnt -o inlinecrypt
To fix this, make ext4 consider journal inodes with the encrypt flag to
be invalid. (Note, maybe other flags should be rejected on the journal
inode too. For now, this is just the minimal fix for the above issue.)
I've marked this as fixing the commit that introduced the call to
fscrypt_limit_io_blocks(), since that's what made an actual crash start
being possible. But this fix could be applied to any version of ext4
that supports the encrypt feature. |
In the Linux kernel, the following vulnerability has been resolved:
MIPS: SGI-IP27: Fix platform-device leak in bridge_platform_create()
In error case in bridge_platform_create after calling
platform_device_add()/platform_device_add_data()/
platform_device_add_resources(), release the failed
'pdev' or it will be leak, call platform_device_put()
to fix this problem.
Besides, 'pdev' is divided into 'pdev_wd' and 'pdev_bd',
use platform_device_unregister() to release sgi_w1
resources when xtalk-bridge registration fails. |
In the Linux kernel, the following vulnerability has been resolved:
chardev: fix error handling in cdev_device_add()
While doing fault injection test, I got the following report:
------------[ cut here ]------------
kobject: '(null)' (0000000039956980): is not initialized, yet kobject_put() is being called.
WARNING: CPU: 3 PID: 6306 at kobject_put+0x23d/0x4e0
CPU: 3 PID: 6306 Comm: 283 Tainted: G W 6.1.0-rc2-00005-g307c1086d7c9 #1253
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:kobject_put+0x23d/0x4e0
Call Trace:
<TASK>
cdev_device_add+0x15e/0x1b0
__iio_device_register+0x13b4/0x1af0 [industrialio]
__devm_iio_device_register+0x22/0x90 [industrialio]
max517_probe+0x3d8/0x6b4 [max517]
i2c_device_probe+0xa81/0xc00
When device_add() is injected fault and returns error, if dev->devt is not set,
cdev_add() is not called, cdev_del() is not needed. Fix this by checking dev->devt
in error path. |
In the Linux kernel, the following vulnerability has been resolved:
ipc: fix memory leak in init_mqueue_fs()
When setup_mq_sysctls() failed in init_mqueue_fs(), mqueue_inode_cachep is
not released. In order to fix this issue, the release path is reordered. |