CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Veriexec is a kernel-based file integrity subsystem in Junos OS that ensures only authorized binaries are able to be executed. Due to a flaw in specific versions of Junos OS, affecting specific EX Series platforms, the Veriexec subsystem will fail to initialize, in essence disabling file integrity checking. This may allow a locally authenticated user with shell access to install untrusted executable images, and elevate privileges to gain full control of the system. During the installation of an affected version of Junos OS are installed, the following messages will be logged to the console: Initializing Verified Exec: /sbin/veriexec: Undefined symbol "__aeabi_uidiv" /sbin/veriexec: Undefined symbol "__aeabi_uidiv" /sbin/veriexec: Undefined symbol "__aeabi_uidiv" veriexec: /.mount/packages/db/os-kernel-prd-arm-32-20190221.70c2600_builder_stable_11/boot/brcm-hr3.dtb: Authentication error veriexec: /.mount/packages/db/os-kernel-prd-arm-32-20190221.70c2600_builder_stable_11/boot/contents.izo: Authentication error ... This issue affects Juniper Networks Junos OS: 18.1R3-S4 on EX2300, EX2300-C and EX3400; 18.3R1-S3 on EX2300, EX2300-C and EX3400. |
The installer for BitDefender GravityZone relies on an encoded string in a filename to determine the URL for installation metadata, which allows remote attackers to execute arbitrary code by changing the filename while leaving the file's digital signature unchanged. |
HTTPRedirect.php in the saml2 library in SimpleSAMLphp before 1.15.4 has an incorrect check of return values in the signature validation utilities, allowing an attacker to get invalid signatures accepted as valid by forcing an error during validation. This occurs because of a dependency on PHP functionality that interprets a -1 error code as a true boolean value. |
The decoupled download and installation steps in libzypp before 17.5.0 could lead to a corrupted RPM being left in the cache, where a later call would not display the corrupted RPM warning and allow installation, a problem caused by malicious warnings only displayed during download. |
The XmlSecLibs library as used in the saml2 library in SimpleSAMLphp before 1.15.3 incorrectly verifies signatures on SAML assertions, allowing a remote attacker to construct a crafted SAML assertion on behalf of an Identity Provider that would pass as cryptographically valid, thereby allowing them to impersonate a user from that Identity Provider, aka a key confusion issue. |
Duo Network Gateway 1.2.9 and earlier may incorrectly utilize the results of XML DOM traversal and canonicalization APIs in such a way that an attacker may be able to manipulate the SAML data without invalidating the cryptographic signature, allowing the attack to potentially bypass authentication to SAML service providers. |
Application Protections Bypass vulnerability in Microsoft Windows in McAfee Data Loss Prevention (DLP) Endpoint before 10.0.500 and DLP Endpoint before 11.0.400 allows authenticated users to bypass the product block action via a command-line utility. |
The rsa_pss_params_parse function in libstrongswan/credentials/keys/signature_params.c in strongSwan 5.6.1 allows remote attackers to cause a denial of service via a crafted RSASSA-PSS signature that lacks a mask generation function parameter. |
In HP LaserJet Enterprise, HP PageWide Enterprise, HP LaserJet Managed, and HP OfficeJet Enterprise Printers, solution application signature checking may allow potential execution of arbitrary code. |
Wizkunde SAMLBase may incorrectly utilize the results of XML DOM traversal and canonicalization APIs in such a way that an attacker may be able to manipulate the SAML data without invalidating the cryptographic signature, allowing the attack to potentially bypass authentication to SAML service providers. |
Bluetooth firmware or operating system software drivers in macOS versions before 10.13, High Sierra and iOS versions before 11.4, and Android versions before the 2018-06-05 patch may not sufficiently validate elliptic curve parameters used to generate public keys during a Diffie-Hellman key exchange, which may allow a remote attacker to obtain the encryption key used by the device. |
An issue was discovered in certain Apple products. macOS before 10.13.4 is affected. The issue involves the "Mail" component. It allows man-in-the-middle attackers to read S/MIME encrypted message content by sending HTML e-mail that references remote resources but lacks a valid S/MIME signature. |
An exploitable vulnerability exists in the verified boot protection of the Das U-Boot from version 2013.07-rc1 to 2014.07-rc2. The affected versions lack proper FIT signature enforcement, which allows an attacker to bypass U-Boot's verified boot and execute an unsigned kernel, embedded in a legacy image format. To trigger this vulnerability, a local attacker needs to be able to supply the image to boot. |
Hyperledger Iroha versions v1.0_beta and v1.0.0_beta-1 are vulnerable to transaction and block signature verification bypass in the transaction and block validator allowing a single node to sign a transaction and/or block multiple times, each with a random nonce, and have other validating nodes accept them as separate valid signatures. |
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Security). Supported versions that are affected are Java SE: 6u201, 7u191, 8u182 and 11; Java SE Embedded: 8u181. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g. code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g. code installed by an administrator). CVSS 3.0 Base Score 3.4 (Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:N/I:L/A:N). |
IBM Cognos Analytics 11 Configuration tool, under certain circumstances, will bypass OIDC namespace signature verification on its id_token. IBM X-Force ID: 150902. |
The Portable Document Format (PDF) specification does not provide any information regarding the concrete procedure of how to validate signatures. Consequently, an Incremental Saving vulnerability exists in multiple products. When an attacker uses the Incremental Saving feature to add pages or annotations, Body Updates are displayed to the user without any action by the signature-validation logic. This affects Foxit Reader before 9.4 and PhantomPDF before 8.3.9 and 9.x before 9.4. It also affects LibreOffice, Master PDF Editor, Nitro Pro, Nitro Reader, Nuance Power PDF Standard, PDF Editor 6 Pro, PDFelement6 Pro, PDF Studio Viewer 2018, PDF Studio Pro, Perfect PDF 10 Premium, and Perfect PDF Reader. |
The Linux kernel, as used in Ubuntu 18.10 and when booted with UEFI Secure Boot enabled, allows privileged local users to bypass intended Secure Boot restrictions and execute untrusted code by loading arbitrary kernel modules. This occurs because a modified kernel/module.c, in conjunction with certain configuration options, leads to mishandling of the result of signature verification. |
A flaw during verification of certain S/MIME signatures causes emails to be shown in Thunderbird as having a valid digital signature, even if the shown message contents aren't covered by the signature. The flaw allows an attacker to reuse a valid S/MIME signature to craft an email message with arbitrary content. This vulnerability affects Thunderbird < 60.5.1. |
A vulnerability in the update mechanism of Subaru StarLink Harman head units 2017, 2018, and 2019 may give an attacker (with physical access to the vehicle's USB ports) the ability to rewrite the firmware of the head unit. This occurs because the device accepts modified QNX6 filesystem images (as long as the attacker obtains access to certain Harman decryption/encryption code) as a consequence of a bug where unsigned images pass a validity check. An attacker could potentially install persistent malicious head unit firmware and execute arbitrary code as the root user. |