CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btrtl: check for NULL in btrtl_set_quirks()
The btrtl_set_quirks() has accessed btrtl_dev->ic_info->lmp_subver since
b8e482d02513. However, if installing a Realtek Bluetooth controller
without the driver supported, it will hit the NULL point accessed.
Add a check for NULL to avoid the Kernel Oops. |
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix null-ptr-deref on inode->i_op in ntfs_lookup()
Syzbot reported a null-ptr-deref bug:
ntfs3: loop0: Different NTFS' sector size (1024) and media sector size
(512)
ntfs3: loop0: Mark volume as dirty due to NTFS errors
general protection fault, probably for non-canonical address
0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
RIP: 0010:d_flags_for_inode fs/dcache.c:1980 [inline]
RIP: 0010:__d_add+0x5ce/0x800 fs/dcache.c:2796
Call Trace:
<TASK>
d_splice_alias+0x122/0x3b0 fs/dcache.c:3191
lookup_open fs/namei.c:3391 [inline]
open_last_lookups fs/namei.c:3481 [inline]
path_openat+0x10e6/0x2df0 fs/namei.c:3688
do_filp_open+0x264/0x4f0 fs/namei.c:3718
do_sys_openat2+0x124/0x4e0 fs/open.c:1310
do_sys_open fs/open.c:1326 [inline]
__do_sys_open fs/open.c:1334 [inline]
__se_sys_open fs/open.c:1330 [inline]
__x64_sys_open+0x221/0x270 fs/open.c:1330
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
If the MFT record of ntfs inode is not a base record, inode->i_op can be
NULL. And a null-ptr-deref may happen:
ntfs_lookup()
dir_search_u() # inode->i_op is set to NULL
d_splice_alias()
__d_add()
d_flags_for_inode() # inode->i_op->get_link null-ptr-deref
Fix this by adding a Check on inode->i_op before calling the
d_splice_alias() function. |
In the Linux kernel, the following vulnerability has been resolved:
udf: Do not update file length for failed writes to inline files
When write to inline file fails (or happens only partly), we still
updated length of inline data as if the whole write succeeded. Fix the
update of length of inline data to happen only if the write succeeds. |
In the Linux kernel, the following vulnerability has been resolved:
sctp: check send stream number after wait_for_sndbuf
This patch fixes a corner case where the asoc out stream count may change
after wait_for_sndbuf.
When the main thread in the client starts a connection, if its out stream
count is set to N while the in stream count in the server is set to N - 2,
another thread in the client keeps sending the msgs with stream number
N - 1, and waits for sndbuf before processing INIT_ACK.
However, after processing INIT_ACK, the out stream count in the client is
shrunk to N - 2, the same to the in stream count in the server. The crash
occurs when the thread waiting for sndbuf is awake and sends the msg in a
non-existing stream(N - 1), the call trace is as below:
KASAN: null-ptr-deref in range [0x0000000000000038-0x000000000000003f]
Call Trace:
<TASK>
sctp_cmd_send_msg net/sctp/sm_sideeffect.c:1114 [inline]
sctp_cmd_interpreter net/sctp/sm_sideeffect.c:1777 [inline]
sctp_side_effects net/sctp/sm_sideeffect.c:1199 [inline]
sctp_do_sm+0x197d/0x5310 net/sctp/sm_sideeffect.c:1170
sctp_primitive_SEND+0x9f/0xc0 net/sctp/primitive.c:163
sctp_sendmsg_to_asoc+0x10eb/0x1a30 net/sctp/socket.c:1868
sctp_sendmsg+0x8d4/0x1d90 net/sctp/socket.c:2026
inet_sendmsg+0x9d/0xe0 net/ipv4/af_inet.c:825
sock_sendmsg_nosec net/socket.c:722 [inline]
sock_sendmsg+0xde/0x190 net/socket.c:745
The fix is to add an unlikely check for the send stream number after the
thread wakes up from the wait_for_sndbuf. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: fix "bad unlock balance" in l2cap_disconnect_rsp
conn->chan_lock isn't acquired before l2cap_get_chan_by_scid,
if l2cap_get_chan_by_scid returns NULL, then 'bad unlock balance'
is triggered. |
In the Linux kernel, the following vulnerability has been resolved:
nfc: fix memory leak of se_io context in nfc_genl_se_io
The callback context for sending/receiving APDUs to/from the selected
secure element is allocated inside nfc_genl_se_io and supposed to be
eventually freed in se_io_cb callback function. However, there are several
error paths where the bwi_timer is not charged to call se_io_cb later, and
the cb_context is leaked.
The patch proposes to free the cb_context explicitly on those error paths.
At the moment we can't simply check 'dev->ops->se_io()' return value as it
may be negative in both cases: when the timer was charged and was not. |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix kernel crash due to null io->bio
We should return when io->bio is null before doing anything. Otherwise, panic.
BUG: kernel NULL pointer dereference, address: 0000000000000010
RIP: 0010:__submit_merged_write_cond+0x164/0x240 [f2fs]
Call Trace:
<TASK>
f2fs_submit_merged_write+0x1d/0x30 [f2fs]
commit_checkpoint+0x110/0x1e0 [f2fs]
f2fs_write_checkpoint+0x9f7/0xf00 [f2fs]
? __pfx_issue_checkpoint_thread+0x10/0x10 [f2fs]
__checkpoint_and_complete_reqs+0x84/0x190 [f2fs]
? preempt_count_add+0x82/0xc0
? __pfx_issue_checkpoint_thread+0x10/0x10 [f2fs]
issue_checkpoint_thread+0x4c/0xf0 [f2fs]
? __pfx_autoremove_wake_function+0x10/0x10
kthread+0xff/0x130
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2c/0x50
</TASK> |
The Sparkle framework includes a helper tool Autoupdate. Due to lack of authentication of connecting clients a local unprivileged attacker can request installation of crafted malicious PKG file by racing to connect to the daemon when other app spawns it as root. This results in local privilege escalation to root privileges. It is worth noting that it is possible to spawn Autopudate manually via Installer XPC service. However this requires the victim to enter credentials upon system authorization dialog creation that can be modified by the attacker.
This issue was fixed in version 2.7.2 |
Relative path traversal vulnerability due to improper input validation in Digilent WaveForms that may result in arbitrary code execution. Successful exploitation requires an attacker to get a user to open a specially crafted .DWF3WORK file. This vulnerability affects Digilent WaveForms 3.24.3 and prior versions. |
The extension "Form to Database" is susceptible to Cross-Site Scripting. This issue affects the following versions: before 2.2.5, from 3.0.0 before 3.2.2, from 4.0.0 before 4.2.3, from 5.0.0 before 5.0.2. |
A vulnerability has been found in harry0703 MoneyPrinterTurbo up to 1.2.6. The impacted element is the function download_video/stream_video of the file app/controllers/v1/video.py of the component URL Handler. The manipulation of the argument file_path leads to path traversal. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. |
A weakness has been identified in SpyShelter up to 15.4.0.1015. Affected is an unknown function in the library SpyShelter.sys of the component IOCTL Handler. This manipulation causes denial of service. The attack needs to be launched locally. The exploit has been made available to the public and could be exploited. Upgrading to version 15.4.0.1028 is able to address this issue. It is advisable to upgrade the affected component. |
In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau/disp: fix use-after-free in error handling of nouveau_connector_create
We can't simply free the connector after calling drm_connector_init on it.
We need to clean up the drm side first.
It might not fix all regressions from commit 2b5d1c29f6c4
("drm/nouveau/disp: PIOR DP uses GPIO for HPD, not PMGR AUX interrupts"),
but at least it fixes a memory corruption in error handling related to
that commit. |
In the Linux kernel, the following vulnerability has been resolved:
clk: imx: clk-imxrt1050: fix memory leak in imxrt1050_clocks_probe
Use devm_of_iomap() instead of of_iomap() to automatically
handle the unused ioremap region. If any error occurs, regions allocated by
kzalloc() will leak, but using devm_kzalloc() instead will automatically
free the memory using devm_kfree().
Also, fix error handling of hws by adding unregister_hws label, which
unregisters remaining hws when iomap failed. |
In the Linux kernel, the following vulnerability has been resolved:
ubi: ensure that VID header offset + VID header size <= alloc, size
Ensure that the VID header offset + VID header size does not exceed
the allocated area to avoid slab OOB.
BUG: KASAN: slab-out-of-bounds in crc32_body lib/crc32.c:111 [inline]
BUG: KASAN: slab-out-of-bounds in crc32_le_generic lib/crc32.c:179 [inline]
BUG: KASAN: slab-out-of-bounds in crc32_le_base+0x58c/0x626 lib/crc32.c:197
Read of size 4 at addr ffff88802bb36f00 by task syz-executor136/1555
CPU: 2 PID: 1555 Comm: syz-executor136 Tainted: G W
6.0.0-1868 #1
Hardware name: Red Hat KVM, BIOS 1.13.0-2.module+el8.3.0+7860+a7792d29
04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x85/0xad lib/dump_stack.c:106
print_address_description mm/kasan/report.c:317 [inline]
print_report.cold.13+0xb6/0x6bb mm/kasan/report.c:433
kasan_report+0xa7/0x11b mm/kasan/report.c:495
crc32_body lib/crc32.c:111 [inline]
crc32_le_generic lib/crc32.c:179 [inline]
crc32_le_base+0x58c/0x626 lib/crc32.c:197
ubi_io_write_vid_hdr+0x1b7/0x472 drivers/mtd/ubi/io.c:1067
create_vtbl+0x4d5/0x9c4 drivers/mtd/ubi/vtbl.c:317
create_empty_lvol drivers/mtd/ubi/vtbl.c:500 [inline]
ubi_read_volume_table+0x67b/0x288a drivers/mtd/ubi/vtbl.c:812
ubi_attach+0xf34/0x1603 drivers/mtd/ubi/attach.c:1601
ubi_attach_mtd_dev+0x6f3/0x185e drivers/mtd/ubi/build.c:965
ctrl_cdev_ioctl+0x2db/0x347 drivers/mtd/ubi/cdev.c:1043
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x193/0x213 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3e/0x86 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0x0
RIP: 0033:0x7f96d5cf753d
Code:
RSP: 002b:00007fffd72206f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f96d5cf753d
RDX: 0000000020000080 RSI: 0000000040186f40 RDI: 0000000000000003
RBP: 0000000000400cd0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000400be0
R13: 00007fffd72207e0 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Allocated by task 1555:
kasan_save_stack+0x20/0x3d mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:45 [inline]
set_alloc_info mm/kasan/common.c:437 [inline]
____kasan_kmalloc mm/kasan/common.c:516 [inline]
__kasan_kmalloc+0x88/0xa3 mm/kasan/common.c:525
kasan_kmalloc include/linux/kasan.h:234 [inline]
__kmalloc+0x138/0x257 mm/slub.c:4429
kmalloc include/linux/slab.h:605 [inline]
ubi_alloc_vid_buf drivers/mtd/ubi/ubi.h:1093 [inline]
create_vtbl+0xcc/0x9c4 drivers/mtd/ubi/vtbl.c:295
create_empty_lvol drivers/mtd/ubi/vtbl.c:500 [inline]
ubi_read_volume_table+0x67b/0x288a drivers/mtd/ubi/vtbl.c:812
ubi_attach+0xf34/0x1603 drivers/mtd/ubi/attach.c:1601
ubi_attach_mtd_dev+0x6f3/0x185e drivers/mtd/ubi/build.c:965
ctrl_cdev_ioctl+0x2db/0x347 drivers/mtd/ubi/cdev.c:1043
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x193/0x213 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3e/0x86 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0x0
The buggy address belongs to the object at ffff88802bb36e00
which belongs to the cache kmalloc-256 of size 256
The buggy address is located 0 bytes to the right of
256-byte region [ffff88802bb36e00, ffff88802bb36f00)
The buggy address belongs to the physical page:
page:00000000ea4d1263 refcount:1 mapcount:0 mapping:0000000000000000
index:0x0 pfn:0x2bb36
head:00000000ea4d1263 order:1 compound_mapcount:0 compound_pincount:0
flags: 0xfffffc0010200(slab|head|node=0|zone=1|lastcpupid=0x1fffff)
raw: 000fffffc0010200 ffffea000066c300 dead000000000003 ffff888100042b40
raw: 0000000000000000 00000000001
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
arm64: acpi: Fix possible memory leak of ffh_ctxt
Allocated 'ffh_ctxt' memory leak is possible if the SMCCC version
and conduit checks fail and -EOPNOTSUPP is returned without freeing the
allocated memory.
Fix the same by moving the allocation after the SMCCC version and
conduit checks. |
A vulnerability was identified in kidaze CourseSelectionSystem up to 42cd892b40a18d50bd4ed1905fa89f939173a464. The affected element is an unknown function of the file /Profilers/PriProfile/eligibility.php. Such manipulation of the argument Branch leads to sql injection. The attack can be launched remotely. The exploit is publicly available and might be used. This product does not use versioning. This is why information about affected and unaffected releases are unavailable. |
Dataease is an open-source data visualization and analysis platform. In versions up to and including 2.10.12, the Impala data source is vulnerable to remote code execution due to insufficient filtering in the getJdbc method of the io.dataease.datasource.type.Impala class. Attackers can construct malicious JDBC connection strings that exploit JNDI injection and trigger RMI deserialization, ultimately enabling remote command execution. The vulnerability can be exploited by editing the data source and providing a crafted JDBC connection string that references a remote configuration file, leading to RMI-based deserialization attacks. This issue has been patched in version 2.10.13. It is recommended to upgrade to the latest version. No known workarounds exist for affected versions. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix i_disksize exceeding i_size problem in paritally written case
It is possible for i_disksize can exceed i_size, triggering a warning.
generic_perform_write
copied = iov_iter_copy_from_user_atomic(len) // copied < len
ext4_da_write_end
| ext4_update_i_disksize
| new_i_size = pos + copied;
| WRITE_ONCE(EXT4_I(inode)->i_disksize, newsize) // update i_disksize
| generic_write_end
| copied = block_write_end(copied, len) // copied = 0
| if (unlikely(copied < len))
| if (!PageUptodate(page))
| copied = 0;
| if (pos + copied > inode->i_size) // return false
if (unlikely(copied == 0))
goto again;
if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
status = -EFAULT;
break;
}
We get i_disksize greater than i_size here, which could trigger WARNING
check 'i_size_read(inode) < EXT4_I(inode)->i_disksize' while doing dio:
ext4_dio_write_iter
iomap_dio_rw
__iomap_dio_rw // return err, length is not aligned to 512
ext4_handle_inode_extension
WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize) // Oops
WARNING: CPU: 2 PID: 2609 at fs/ext4/file.c:319
CPU: 2 PID: 2609 Comm: aa Not tainted 6.3.0-rc2
RIP: 0010:ext4_file_write_iter+0xbc7
Call Trace:
vfs_write+0x3b1
ksys_write+0x77
do_syscall_64+0x39
Fix it by updating 'copied' value before updating i_disksize just like
ext4_write_inline_data_end() does.
A reproducer can be found in the buganizer link below. |
Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Ubit Information Technologies STOYS allows Cross-Site Scripting (XSS).This issue affects STOYS: from 2 through 20250916.
NOTE: The vendor did not inform about the completion of the fixing process within the specified time. The CVE will be updated when new information becomes available. |