Search
Search Results (2739 CVEs found)
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-54949 | 1 Meta | 1 Executorch | 2025-08-12 | 9.8 Critical |
| A heap buffer overflow vulnerability in the loading of ExecuTorch models can potentially result in code execution or other undesirable effects. This issue affects ExecuTorch prior to commit ede82493dae6d2d43f8c424e7be4721abe5242be | ||||
| CVE-2025-5982 | 1 Gitlab | 1 Gitlab | 2025-08-12 | 3.7 Low |
| An issue has been discovered in GitLab EE affecting all versions from 12.0 before 17.10.8, 17.11 before 17.11.4, and 18.0 before 18.0.2. Under certain conditions users could bypass IP access restrictions and view sensitive information. | ||||
| CVE-2021-42018 | 1 Siemens | 54 Ruggedcom I800, Ruggedcom I801, Ruggedcom I802 and 51 more | 2025-08-12 | 5.9 Medium |
| A vulnerability has been identified in RUGGEDCOM i800, RUGGEDCOM i800NC, RUGGEDCOM i801, RUGGEDCOM i801NC, RUGGEDCOM i802, RUGGEDCOM i802NC, RUGGEDCOM i803, RUGGEDCOM i803NC, RUGGEDCOM M2100, RUGGEDCOM M2100F, RUGGEDCOM M2100NC, RUGGEDCOM M2200, RUGGEDCOM M2200F, RUGGEDCOM M2200NC, RUGGEDCOM M969, RUGGEDCOM M969F, RUGGEDCOM M969NC, RUGGEDCOM RMC30, RUGGEDCOM RMC30NC, RUGGEDCOM RMC8388 V4.X, RUGGEDCOM RMC8388 V5.X, RUGGEDCOM RMC8388NC V4.X, RUGGEDCOM RMC8388NC V5.X, RUGGEDCOM RP110, RUGGEDCOM RP110NC, RUGGEDCOM RS1600, RUGGEDCOM RS1600F, RUGGEDCOM RS1600FNC, RUGGEDCOM RS1600NC, RUGGEDCOM RS1600T, RUGGEDCOM RS1600TNC, RUGGEDCOM RS400, RUGGEDCOM RS400F, RUGGEDCOM RS400NC, RUGGEDCOM RS401, RUGGEDCOM RS401NC, RUGGEDCOM RS416, RUGGEDCOM RS416F, RUGGEDCOM RS416NC, RUGGEDCOM RS416NCv2 V4.X, RUGGEDCOM RS416NCv2 V5.X, RUGGEDCOM RS416P, RUGGEDCOM RS416PF, RUGGEDCOM RS416PNC, RUGGEDCOM RS416PNCv2 V4.X, RUGGEDCOM RS416PNCv2 V5.X, RUGGEDCOM RS416Pv2 V4.X, RUGGEDCOM RS416Pv2 V5.X, RUGGEDCOM RS416v2 V4.X, RUGGEDCOM RS416v2 V5.X, RUGGEDCOM RS8000, RUGGEDCOM RS8000A, RUGGEDCOM RS8000ANC, RUGGEDCOM RS8000H, RUGGEDCOM RS8000HNC, RUGGEDCOM RS8000NC, RUGGEDCOM RS8000T, RUGGEDCOM RS8000TNC, RUGGEDCOM RS900, RUGGEDCOM RS900 (32M) V4.X, RUGGEDCOM RS900 (32M) V5.X, RUGGEDCOM RS900F, RUGGEDCOM RS900G, RUGGEDCOM RS900G (32M) V4.X, RUGGEDCOM RS900G (32M) V5.X, RUGGEDCOM RS900GF, RUGGEDCOM RS900GNC, RUGGEDCOM RS900GNC(32M) V4.X, RUGGEDCOM RS900GNC(32M) V5.X, RUGGEDCOM RS900GP, RUGGEDCOM RS900GPF, RUGGEDCOM RS900GPNC, RUGGEDCOM RS900L, RUGGEDCOM RS900LNC, RUGGEDCOM RS900M-GETS-C01, RUGGEDCOM RS900M-GETS-XX, RUGGEDCOM RS900M-STND-C01, RUGGEDCOM RS900M-STND-XX, RUGGEDCOM RS900MNC-GETS-C01, RUGGEDCOM RS900MNC-GETS-XX, RUGGEDCOM RS900MNC-STND-XX, RUGGEDCOM RS900MNC-STND-XX-C01, RUGGEDCOM RS900NC, RUGGEDCOM RS900NC(32M) V4.X, RUGGEDCOM RS900NC(32M) V5.X, RUGGEDCOM RS900W, RUGGEDCOM RS910, RUGGEDCOM RS910L, RUGGEDCOM RS910LNC, RUGGEDCOM RS910NC, RUGGEDCOM RS910W, RUGGEDCOM RS920L, RUGGEDCOM RS920LNC, RUGGEDCOM RS920W, RUGGEDCOM RS930L, RUGGEDCOM RS930LNC, RUGGEDCOM RS930W, RUGGEDCOM RS940G, RUGGEDCOM RS940GF, RUGGEDCOM RS940GNC, RUGGEDCOM RS969, RUGGEDCOM RS969NC, RUGGEDCOM RSG2100, RUGGEDCOM RSG2100 (32M) V4.X, RUGGEDCOM RSG2100 (32M) V5.X, RUGGEDCOM RSG2100F, RUGGEDCOM RSG2100NC, RUGGEDCOM RSG2100NC(32M) V4.X, RUGGEDCOM RSG2100NC(32M) V5.X, RUGGEDCOM RSG2100P, RUGGEDCOM RSG2100P (32M) V4.X, RUGGEDCOM RSG2100P (32M) V5.X, RUGGEDCOM RSG2100PF, RUGGEDCOM RSG2100PNC, RUGGEDCOM RSG2100PNC (32M) V4.X, RUGGEDCOM RSG2100PNC (32M) V5.X, RUGGEDCOM RSG2200, RUGGEDCOM RSG2200F, RUGGEDCOM RSG2200NC, RUGGEDCOM RSG2288 V4.X, RUGGEDCOM RSG2288 V5.X, RUGGEDCOM RSG2288NC V4.X, RUGGEDCOM RSG2288NC V5.X, RUGGEDCOM RSG2300 V4.X, RUGGEDCOM RSG2300 V5.X, RUGGEDCOM RSG2300F, RUGGEDCOM RSG2300NC V4.X, RUGGEDCOM RSG2300NC V5.X, RUGGEDCOM RSG2300P V4.X, RUGGEDCOM RSG2300P V5.X, RUGGEDCOM RSG2300PF, RUGGEDCOM RSG2300PNC V4.X, RUGGEDCOM RSG2300PNC V5.X, RUGGEDCOM RSG2488 V4.X, RUGGEDCOM RSG2488 V5.X, RUGGEDCOM RSG2488F, RUGGEDCOM RSG2488NC V4.X, RUGGEDCOM RSG2488NC V5.X, RUGGEDCOM RSG907R, RUGGEDCOM RSG908C, RUGGEDCOM RSG909R, RUGGEDCOM RSG910C, RUGGEDCOM RSG920P V4.X, RUGGEDCOM RSG920P V5.X, RUGGEDCOM RSG920PNC V4.X, RUGGEDCOM RSG920PNC V5.X, RUGGEDCOM RSL910, RUGGEDCOM RSL910NC, RUGGEDCOM RST2228, RUGGEDCOM RST2228P, RUGGEDCOM RST916C, RUGGEDCOM RST916P. Within a third-party component, whenever memory allocation is requested, the out of bound size is not checked. Therefore, if size exceeding the expected allocation is assigned, it could allocate a smaller buffer instead. If an attacker were to exploit this, they could cause a heap overflow. | ||||
| CVE-2022-43655 | 1 Bentley | 1 View | 2025-08-11 | N/A |
| Bentley View FBX File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Bentley View. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of FBX files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-18491. | ||||
| CVE-2025-2531 | 1 Luxion | 1 Keyshot | 2025-08-11 | N/A |
| Luxion KeyShot DAE File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Luxion KeyShot. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of dae files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-23704. | ||||
| CVE-2025-4979 | 1 Gitlab | 1 Gitlab | 2025-08-08 | 4.9 Medium |
| An issue has been discovered in GitLab CE/EE affecting all versions before 17.10.7, 17.11 before 17.11.3, and 18.0 before 18.0.1. An attacker may be able to reveal masked or hidden CI variables (that they did not author) in the WebUI, by simply creating their own variable and observing the HTTP response. | ||||
| CVE-2025-1278 | 1 Gitlab | 1 Gitlab | 2025-08-08 | 5.3 Medium |
| An issue has been discovered in GitLab CE/EE affecting all versions from 12.0 before 17.9.8, 17.10 before 17.10.6, and 17.11 before 17.11.2. Under certain conditions users could bypass IP access restrictions and view sensitive information. | ||||
| CVE-2025-2019 | 1 Ashlar | 1 Cobalt | 2025-08-08 | N/A |
| Ashlar-Vellum Cobalt VC6 File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25252. | ||||
| CVE-2024-6246 | 1 Wyze | 2 Cam V3, Cam V3 Firmware | 2025-08-08 | 8.8 High |
| Wyze Cam v3 Realtek Wi-Fi Driver Heap-Based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of Wyze Cam v3 IP cameras. Authentication is not required to exploit this vulnerability. The specific flaw exists within the Realtek Wi-Fi kernel module. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the kernel. Was ZDI-CAN-22310. | ||||
| CVE-2023-34299 | 2 Ashlar, Ashlar Vellum | 2 Cobalt, Cobalt | 2025-08-08 | N/A |
| Ashlar-Vellum Cobalt CO File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. . Was ZDI-CAN-17910. | ||||
| CVE-2025-2408 | 1 Gitlab | 1 Gitlab | 2025-08-07 | 5.3 Medium |
| An issue has been discovered in GitLab CE/EE affecting all versions from 13.12 before 17.8.7, 17.9 before 17.9.6, and 17.10 before 17.10.4. Under certain conditions users could bypass IP access restrictions and view sensitive information. | ||||
| CVE-2025-1045 | 1 Luxion | 2 Keyshot, Keyshot Viewer | 2025-08-07 | N/A |
| Luxion KeyShot Viewer KSP File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Luxion KeyShot Viewer. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of KSP files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24586. | ||||
| CVE-2023-37342 | 2 Kofax, Tungstenautomation | 2 Power Pdf, Power Pdf | 2025-08-07 | N/A |
| Kofax Power PDF PNG File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Kofax Power PDF. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of PNG files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-20439. | ||||
| CVE-2024-5876 | 1 Irfanview | 2 Formats, Irfanview | 2025-08-07 | N/A |
| IrfanView PSP File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of IrfanView. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of PSP files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-23973. | ||||
| CVE-2023-38080 | 2 Kofax, Tungstenautomation | 2 Power Pdf, Power Pdf | 2025-08-07 | N/A |
| Kofax Power PDF PDF File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Kofax Power PDF. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-20486. | ||||
| CVE-2023-34289 | 2 Ashlar, Ashlar Vellum | 2 Cobalt, Cobalt | 2025-08-07 | N/A |
| Ashlar-Vellum Cobalt Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of AR files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. . Was ZDI-CAN-17985. | ||||
| CVE-2023-37344 | 2 Kofax, Tungstenautomation | 2 Power Pdf, Power Pdf | 2025-08-07 | N/A |
| Kofax Power PDF BMP File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Kofax Power PDF. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of BMP files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-20441. | ||||
| CVE-2025-40597 | 1 Sonicwall | 6 Sma 210, Sma 210 Firmware, Sma 410 and 3 more | 2025-08-07 | 7.5 High |
| A Heap-based buffer overflow vulnerability in the SMA100 series web interface allows remote, unauthenticated attacker to cause Denial of Service (DoS) or potentially results in code execution. | ||||
| CVE-2023-37335 | 2 Kofax, Tungstenautomation | 2 Power Pdf, Power Pdf | 2025-08-07 | 7.8 High |
| Kofax Power PDF BMP File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Kofax Power PDF. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of BMP files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-20391. | ||||
| CVE-2023-42038 | 2 Kofax, Tungstenautomation | 2 Power Pdf, Power Pdf | 2025-08-07 | N/A |
| Kofax Power PDF PDF File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Kofax Power PDF. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-21602. | ||||