| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
rapidio: fix an API misues when rio_add_net() fails
rio_add_net() calls device_register() and fails when device_register()
fails. Thus, put_device() should be used rather than kfree(). Add
"mport->net = NULL;" to avoid a use after free issue. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: intel-ish-hid: Fix use-after-free issue in ishtp_hid_remove()
The system can experience a random crash a few minutes after the driver is
removed. This issue occurs due to improper handling of memory freeing in
the ishtp_hid_remove() function.
The function currently frees the `driver_data` directly within the loop
that destroys the HID devices, which can lead to accessing freed memory.
Specifically, `hid_destroy_device()` uses `driver_data` when it calls
`hid_ishtp_set_feature()` to power off the sensor, so freeing
`driver_data` beforehand can result in accessing invalid memory.
This patch resolves the issue by storing the `driver_data` in a temporary
variable before calling `hid_destroy_device()`, and then freeing the
`driver_data` after the device is destroyed. |
| In the Linux kernel, the following vulnerability has been resolved:
net: gso: fix ownership in __udp_gso_segment
In __udp_gso_segment the skb destructor is removed before segmenting the
skb but the socket reference is kept as-is. This is an issue if the
original skb is later orphaned as we can hit the following bug:
kernel BUG at ./include/linux/skbuff.h:3312! (skb_orphan)
RIP: 0010:ip_rcv_core+0x8b2/0xca0
Call Trace:
ip_rcv+0xab/0x6e0
__netif_receive_skb_one_core+0x168/0x1b0
process_backlog+0x384/0x1100
__napi_poll.constprop.0+0xa1/0x370
net_rx_action+0x925/0xe50
The above can happen following a sequence of events when using
OpenVSwitch, when an OVS_ACTION_ATTR_USERSPACE action precedes an
OVS_ACTION_ATTR_OUTPUT action:
1. OVS_ACTION_ATTR_USERSPACE is handled (in do_execute_actions): the skb
goes through queue_gso_packets and then __udp_gso_segment, where its
destructor is removed.
2. The segments' data are copied and sent to userspace.
3. OVS_ACTION_ATTR_OUTPUT is handled (in do_execute_actions) and the
same original skb is sent to its path.
4. If it later hits skb_orphan, we hit the bug.
Fix this by also removing the reference to the socket in
__udp_gso_segment. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix bad hist from corrupting named_triggers list
The following commands causes a crash:
~# cd /sys/kernel/tracing/events/rcu/rcu_callback
~# echo 'hist:name=bad:keys=common_pid:onmax(bogus).save(common_pid)' > trigger
bash: echo: write error: Invalid argument
~# echo 'hist:name=bad:keys=common_pid' > trigger
Because the following occurs:
event_trigger_write() {
trigger_process_regex() {
event_hist_trigger_parse() {
data = event_trigger_alloc(..);
event_trigger_register(.., data) {
cmd_ops->reg(.., data, ..) [hist_register_trigger()] {
data->ops->init() [event_hist_trigger_init()] {
save_named_trigger(name, data) {
list_add(&data->named_list, &named_triggers);
}
}
}
}
ret = create_actions(); (return -EINVAL)
if (ret)
goto out_unreg;
[..]
ret = hist_trigger_enable(data, ...) {
list_add_tail_rcu(&data->list, &file->triggers); <<<---- SKIPPED!!! (this is important!)
[..]
out_unreg:
event_hist_unregister(.., data) {
cmd_ops->unreg(.., data, ..) [hist_unregister_trigger()] {
list_for_each_entry(iter, &file->triggers, list) {
if (!hist_trigger_match(data, iter, named_data, false)) <- never matches
continue;
[..]
test = iter;
}
if (test && test->ops->free) <<<-- test is NULL
test->ops->free(test) [event_hist_trigger_free()] {
[..]
if (data->name)
del_named_trigger(data) {
list_del(&data->named_list); <<<<-- NEVER gets removed!
}
}
}
}
[..]
kfree(data); <<<-- frees item but it is still on list
The next time a hist with name is registered, it causes an u-a-f bug and
the kernel can crash.
Move the code around such that if event_trigger_register() succeeds, the
next thing called is hist_trigger_enable() which adds it to the list.
A bunch of actions is called if get_named_trigger_data() returns false.
But that doesn't need to be called after event_trigger_register(), so it
can be moved up, allowing event_trigger_register() to be called just
before hist_trigger_enable() keeping them together and allowing the
file->triggers to be properly populated. |
| In the Linux kernel, the following vulnerability has been resolved:
ovl: fix UAF in ovl_dentry_update_reval by moving dput() in ovl_link_up
The issue was caused by dput(upper) being called before
ovl_dentry_update_reval(), while upper->d_flags was still
accessed in ovl_dentry_remote().
Move dput(upper) after its last use to prevent use-after-free.
BUG: KASAN: slab-use-after-free in ovl_dentry_remote fs/overlayfs/util.c:162 [inline]
BUG: KASAN: slab-use-after-free in ovl_dentry_update_reval+0xd2/0xf0 fs/overlayfs/util.c:167
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0xc3/0x620 mm/kasan/report.c:488
kasan_report+0xd9/0x110 mm/kasan/report.c:601
ovl_dentry_remote fs/overlayfs/util.c:162 [inline]
ovl_dentry_update_reval+0xd2/0xf0 fs/overlayfs/util.c:167
ovl_link_up fs/overlayfs/copy_up.c:610 [inline]
ovl_copy_up_one+0x2105/0x3490 fs/overlayfs/copy_up.c:1170
ovl_copy_up_flags+0x18d/0x200 fs/overlayfs/copy_up.c:1223
ovl_rename+0x39e/0x18c0 fs/overlayfs/dir.c:1136
vfs_rename+0xf84/0x20a0 fs/namei.c:4893
...
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, test_run: Fix use-after-free issue in eth_skb_pkt_type()
KMSAN reported a use-after-free issue in eth_skb_pkt_type()[1]. The
cause of the issue was that eth_skb_pkt_type() accessed skb's data
that didn't contain an Ethernet header. This occurs when
bpf_prog_test_run_xdp() passes an invalid value as the user_data
argument to bpf_test_init().
Fix this by returning an error when user_data is less than ETH_HLEN in
bpf_test_init(). Additionally, remove the check for "if (user_size >
size)" as it is unnecessary.
[1]
BUG: KMSAN: use-after-free in eth_skb_pkt_type include/linux/etherdevice.h:627 [inline]
BUG: KMSAN: use-after-free in eth_type_trans+0x4ee/0x980 net/ethernet/eth.c:165
eth_skb_pkt_type include/linux/etherdevice.h:627 [inline]
eth_type_trans+0x4ee/0x980 net/ethernet/eth.c:165
__xdp_build_skb_from_frame+0x5a8/0xa50 net/core/xdp.c:635
xdp_recv_frames net/bpf/test_run.c:272 [inline]
xdp_test_run_batch net/bpf/test_run.c:361 [inline]
bpf_test_run_xdp_live+0x2954/0x3330 net/bpf/test_run.c:390
bpf_prog_test_run_xdp+0x148e/0x1b10 net/bpf/test_run.c:1318
bpf_prog_test_run+0x5b7/0xa30 kernel/bpf/syscall.c:4371
__sys_bpf+0x6a6/0xe20 kernel/bpf/syscall.c:5777
__do_sys_bpf kernel/bpf/syscall.c:5866 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5864 [inline]
__x64_sys_bpf+0xa4/0xf0 kernel/bpf/syscall.c:5864
x64_sys_call+0x2ea0/0x3d90 arch/x86/include/generated/asm/syscalls_64.h:322
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xd9/0x1d0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
free_pages_prepare mm/page_alloc.c:1056 [inline]
free_unref_page+0x156/0x1320 mm/page_alloc.c:2657
__free_pages+0xa3/0x1b0 mm/page_alloc.c:4838
bpf_ringbuf_free kernel/bpf/ringbuf.c:226 [inline]
ringbuf_map_free+0xff/0x1e0 kernel/bpf/ringbuf.c:235
bpf_map_free kernel/bpf/syscall.c:838 [inline]
bpf_map_free_deferred+0x17c/0x310 kernel/bpf/syscall.c:862
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa2b/0x1b60 kernel/workqueue.c:3310
worker_thread+0xedf/0x1550 kernel/workqueue.c:3391
kthread+0x535/0x6b0 kernel/kthread.c:389
ret_from_fork+0x6e/0x90 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
CPU: 1 UID: 0 PID: 17276 Comm: syz.1.16450 Not tainted 6.12.0-05490-g9bb88c659673 #8
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014 |
| In the Linux kernel, the following vulnerability has been resolved:
geneve: Fix use-after-free in geneve_find_dev().
syzkaller reported a use-after-free in geneve_find_dev() [0]
without repro.
geneve_configure() links struct geneve_dev.next to
net_generic(net, geneve_net_id)->geneve_list.
The net here could differ from dev_net(dev) if IFLA_NET_NS_PID,
IFLA_NET_NS_FD, or IFLA_TARGET_NETNSID is set.
When dev_net(dev) is dismantled, geneve_exit_batch_rtnl() finally
calls unregister_netdevice_queue() for each dev in the netns,
and later the dev is freed.
However, its geneve_dev.next is still linked to the backend UDP
socket netns.
Then, use-after-free will occur when another geneve dev is created
in the netns.
Let's call geneve_dellink() instead in geneve_destroy_tunnels().
[0]:
BUG: KASAN: slab-use-after-free in geneve_find_dev drivers/net/geneve.c:1295 [inline]
BUG: KASAN: slab-use-after-free in geneve_configure+0x234/0x858 drivers/net/geneve.c:1343
Read of size 2 at addr ffff000054d6ee24 by task syz.1.4029/13441
CPU: 1 UID: 0 PID: 13441 Comm: syz.1.4029 Not tainted 6.13.0-g0ad9617c78ac #24 dc35ca22c79fb82e8e7bc5c9c9adafea898b1e3d
Hardware name: linux,dummy-virt (DT)
Call trace:
show_stack+0x38/0x50 arch/arm64/kernel/stacktrace.c:466 (C)
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0xbc/0x108 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x16c/0x6f0 mm/kasan/report.c:489
kasan_report+0xc0/0x120 mm/kasan/report.c:602
__asan_report_load2_noabort+0x20/0x30 mm/kasan/report_generic.c:379
geneve_find_dev drivers/net/geneve.c:1295 [inline]
geneve_configure+0x234/0x858 drivers/net/geneve.c:1343
geneve_newlink+0xb8/0x128 drivers/net/geneve.c:1634
rtnl_newlink_create+0x23c/0x868 net/core/rtnetlink.c:3795
__rtnl_newlink net/core/rtnetlink.c:3906 [inline]
rtnl_newlink+0x1054/0x1630 net/core/rtnetlink.c:4021
rtnetlink_rcv_msg+0x61c/0x918 net/core/rtnetlink.c:6911
netlink_rcv_skb+0x1dc/0x398 net/netlink/af_netlink.c:2543
rtnetlink_rcv+0x34/0x50 net/core/rtnetlink.c:6938
netlink_unicast_kernel net/netlink/af_netlink.c:1322 [inline]
netlink_unicast+0x618/0x838 net/netlink/af_netlink.c:1348
netlink_sendmsg+0x5fc/0x8b0 net/netlink/af_netlink.c:1892
sock_sendmsg_nosec net/socket.c:713 [inline]
__sock_sendmsg net/socket.c:728 [inline]
____sys_sendmsg+0x410/0x6f8 net/socket.c:2568
___sys_sendmsg+0x178/0x1d8 net/socket.c:2622
__sys_sendmsg net/socket.c:2654 [inline]
__do_sys_sendmsg net/socket.c:2659 [inline]
__se_sys_sendmsg net/socket.c:2657 [inline]
__arm64_sys_sendmsg+0x12c/0x1c8 net/socket.c:2657
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x90/0x278 arch/arm64/kernel/syscall.c:49
el0_svc_common+0x13c/0x250 arch/arm64/kernel/syscall.c:132
do_el0_svc+0x54/0x70 arch/arm64/kernel/syscall.c:151
el0_svc+0x4c/0xa8 arch/arm64/kernel/entry-common.c:744
el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:762
el0t_64_sync+0x198/0x1a0 arch/arm64/kernel/entry.S:600
Allocated by task 13247:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x30/0x68 mm/kasan/common.c:68
kasan_save_alloc_info+0x44/0x58 mm/kasan/generic.c:568
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x84/0xa0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__do_kmalloc_node mm/slub.c:4298 [inline]
__kmalloc_node_noprof+0x2a0/0x560 mm/slub.c:4304
__kvmalloc_node_noprof+0x9c/0x230 mm/util.c:645
alloc_netdev_mqs+0xb8/0x11a0 net/core/dev.c:11470
rtnl_create_link+0x2b8/0xb50 net/core/rtnetlink.c:3604
rtnl_newlink_create+0x19c/0x868 net/core/rtnetlink.c:3780
__rtnl_newlink net/core/rtnetlink.c:3906 [inline]
rtnl_newlink+0x1054/0x1630 net/core/rtnetlink.c:4021
rtnetlink_rcv_msg+0x61c/0x918 net/core/rtnetlink.c:6911
netlink_rcv_skb+0x1dc/0x398 net/netlink/af_netlink.c:2543
rtnetlink_rcv+0x34/0x50 net/core/rtnetlink.c:6938
netlink_unicast_kernel net/netlink/af_n
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: Don't reference skb after sending to VIOS
Previously, after successfully flushing the xmit buffer to VIOS,
the tx_bytes stat was incremented by the length of the skb.
It is invalid to access the skb memory after sending the buffer to
the VIOS because, at any point after sending, the VIOS can trigger
an interrupt to free this memory. A race between reading skb->len
and freeing the skb is possible (especially during LPM) and will
result in use-after-free:
==================================================================
BUG: KASAN: slab-use-after-free in ibmvnic_xmit+0x75c/0x1808 [ibmvnic]
Read of size 4 at addr c00000024eb48a70 by task hxecom/14495
<...>
Call Trace:
[c000000118f66cf0] [c0000000018cba6c] dump_stack_lvl+0x84/0xe8 (unreliable)
[c000000118f66d20] [c0000000006f0080] print_report+0x1a8/0x7f0
[c000000118f66df0] [c0000000006f08f0] kasan_report+0x128/0x1f8
[c000000118f66f00] [c0000000006f2868] __asan_load4+0xac/0xe0
[c000000118f66f20] [c0080000046eac84] ibmvnic_xmit+0x75c/0x1808 [ibmvnic]
[c000000118f67340] [c0000000014be168] dev_hard_start_xmit+0x150/0x358
<...>
Freed by task 0:
kasan_save_stack+0x34/0x68
kasan_save_track+0x2c/0x50
kasan_save_free_info+0x64/0x108
__kasan_mempool_poison_object+0x148/0x2d4
napi_skb_cache_put+0x5c/0x194
net_tx_action+0x154/0x5b8
handle_softirqs+0x20c/0x60c
do_softirq_own_stack+0x6c/0x88
<...>
The buggy address belongs to the object at c00000024eb48a00 which
belongs to the cache skbuff_head_cache of size 224
================================================================== |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: core: flush gadget workqueue after device removal
device_del() can lead to new work being scheduled in gadget->work
workqueue. This is observed, for example, with the dwc3 driver with the
following call stack:
device_del()
gadget_unbind_driver()
usb_gadget_disconnect_locked()
dwc3_gadget_pullup()
dwc3_gadget_soft_disconnect()
usb_gadget_set_state()
schedule_work(&gadget->work)
Move flush_work() after device_del() to ensure the workqueue is cleaned
up. |
| In the Linux kernel, the following vulnerability has been resolved:
ndisc: use RCU protection in ndisc_alloc_skb()
ndisc_alloc_skb() can be called without RTNL or RCU being held.
Add RCU protection to avoid possible UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
neighbour: use RCU protection in __neigh_notify()
__neigh_notify() can be called without RTNL or RCU protection.
Use RCU protection to avoid potential UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
arp: use RCU protection in arp_xmit()
arp_xmit() can be called without RTNL or RCU protection.
Use RCU protection to avoid potential UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
openvswitch: use RCU protection in ovs_vport_cmd_fill_info()
ovs_vport_cmd_fill_info() can be called without RTNL or RCU.
Use RCU protection and dev_net_rcu() to avoid potential UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
ndisc: extend RCU protection in ndisc_send_skb()
ndisc_send_skb() can be called without RTNL or RCU held.
Acquire rcu_read_lock() earlier, so that we can use dev_net_rcu()
and avoid a potential UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
vsock: Keep the binding until socket destruction
Preserve sockets bindings; this includes both resulting from an explicit
bind() and those implicitly bound through autobind during connect().
Prevents socket unbinding during a transport reassignment, which fixes a
use-after-free:
1. vsock_create() (refcnt=1) calls vsock_insert_unbound() (refcnt=2)
2. transport->release() calls vsock_remove_bound() without checking if
sk was bound and moved to bound list (refcnt=1)
3. vsock_bind() assumes sk is in unbound list and before
__vsock_insert_bound(vsock_bound_sockets()) calls
__vsock_remove_bound() which does:
list_del_init(&vsk->bound_table); // nop
sock_put(&vsk->sk); // refcnt=0
BUG: KASAN: slab-use-after-free in __vsock_bind+0x62e/0x730
Read of size 4 at addr ffff88816b46a74c by task a.out/2057
dump_stack_lvl+0x68/0x90
print_report+0x174/0x4f6
kasan_report+0xb9/0x190
__vsock_bind+0x62e/0x730
vsock_bind+0x97/0xe0
__sys_bind+0x154/0x1f0
__x64_sys_bind+0x6e/0xb0
do_syscall_64+0x93/0x1b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Allocated by task 2057:
kasan_save_stack+0x1e/0x40
kasan_save_track+0x10/0x30
__kasan_slab_alloc+0x85/0x90
kmem_cache_alloc_noprof+0x131/0x450
sk_prot_alloc+0x5b/0x220
sk_alloc+0x2c/0x870
__vsock_create.constprop.0+0x2e/0xb60
vsock_create+0xe4/0x420
__sock_create+0x241/0x650
__sys_socket+0xf2/0x1a0
__x64_sys_socket+0x6e/0xb0
do_syscall_64+0x93/0x1b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 2057:
kasan_save_stack+0x1e/0x40
kasan_save_track+0x10/0x30
kasan_save_free_info+0x37/0x60
__kasan_slab_free+0x4b/0x70
kmem_cache_free+0x1a1/0x590
__sk_destruct+0x388/0x5a0
__vsock_bind+0x5e1/0x730
vsock_bind+0x97/0xe0
__sys_bind+0x154/0x1f0
__x64_sys_bind+0x6e/0xb0
do_syscall_64+0x93/0x1b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 7 PID: 2057 at lib/refcount.c:25 refcount_warn_saturate+0xce/0x150
RIP: 0010:refcount_warn_saturate+0xce/0x150
__vsock_bind+0x66d/0x730
vsock_bind+0x97/0xe0
__sys_bind+0x154/0x1f0
__x64_sys_bind+0x6e/0xb0
do_syscall_64+0x93/0x1b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
refcount_t: underflow; use-after-free.
WARNING: CPU: 7 PID: 2057 at lib/refcount.c:28 refcount_warn_saturate+0xee/0x150
RIP: 0010:refcount_warn_saturate+0xee/0x150
vsock_remove_bound+0x187/0x1e0
__vsock_release+0x383/0x4a0
vsock_release+0x90/0x120
__sock_release+0xa3/0x250
sock_close+0x14/0x20
__fput+0x359/0xa80
task_work_run+0x107/0x1d0
do_exit+0x847/0x2560
do_group_exit+0xb8/0x250
__x64_sys_exit_group+0x3a/0x50
x64_sys_call+0xfec/0x14f0
do_syscall_64+0x93/0x1b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix use-after-free when attempting to join an aborted transaction
When we are trying to join the current transaction and if it's aborted,
we read its 'aborted' field after unlocking fs_info->trans_lock and
without holding any extra reference count on it. This means that a
concurrent task that is aborting the transaction may free the transaction
before we read its 'aborted' field, leading to a use-after-free.
Fix this by reading the 'aborted' field while holding fs_info->trans_lock
since any freeing task must first acquire that lock and set
fs_info->running_transaction to NULL before freeing the transaction.
This was reported by syzbot and Dmitry with the following stack traces
from KASAN:
==================================================================
BUG: KASAN: slab-use-after-free in join_transaction+0xd9b/0xda0 fs/btrfs/transaction.c:278
Read of size 4 at addr ffff888011839024 by task kworker/u4:9/1128
CPU: 0 UID: 0 PID: 1128 Comm: kworker/u4:9 Not tainted 6.13.0-rc7-syzkaller-00019-gc45323b7560e #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Workqueue: events_unbound btrfs_async_reclaim_data_space
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
join_transaction+0xd9b/0xda0 fs/btrfs/transaction.c:278
start_transaction+0xaf8/0x1670 fs/btrfs/transaction.c:697
flush_space+0x448/0xcf0 fs/btrfs/space-info.c:803
btrfs_async_reclaim_data_space+0x159/0x510 fs/btrfs/space-info.c:1321
process_one_work kernel/workqueue.c:3236 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3317
worker_thread+0x870/0xd30 kernel/workqueue.c:3398
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 5315:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4329
kmalloc_noprof include/linux/slab.h:901 [inline]
join_transaction+0x144/0xda0 fs/btrfs/transaction.c:308
start_transaction+0xaf8/0x1670 fs/btrfs/transaction.c:697
btrfs_create_common+0x1b2/0x2e0 fs/btrfs/inode.c:6572
lookup_open fs/namei.c:3649 [inline]
open_last_lookups fs/namei.c:3748 [inline]
path_openat+0x1c03/0x3590 fs/namei.c:3984
do_filp_open+0x27f/0x4e0 fs/namei.c:4014
do_sys_openat2+0x13e/0x1d0 fs/open.c:1402
do_sys_open fs/open.c:1417 [inline]
__do_sys_creat fs/open.c:1495 [inline]
__se_sys_creat fs/open.c:1489 [inline]
__x64_sys_creat+0x123/0x170 fs/open.c:1489
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 5336:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2353 [inline]
slab_free mm/slub.c:4613 [inline]
kfree+0x196/0x430 mm/slub.c:4761
cleanup_transaction fs/btrfs/transaction.c:2063 [inline]
btrfs_commit_transaction+0x2c97/0x3720 fs/btrfs/transaction.c:2598
insert_balance_item+0x1284/0x20b0 fs/btrfs/volumes.c:3757
btrfs_balance+0x992/
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: don't allow reconnect after disconnect
Following process can cause nbd_config UAF:
1) grab nbd_config temporarily;
2) nbd_genl_disconnect() flush all recv_work() and release the
initial reference:
nbd_genl_disconnect
nbd_disconnect_and_put
nbd_disconnect
flush_workqueue(nbd->recv_workq)
if (test_and_clear_bit(NBD_RT_HAS_CONFIG_REF, ...))
nbd_config_put
-> due to step 1), reference is still not zero
3) nbd_genl_reconfigure() queue recv_work() again;
nbd_genl_reconfigure
config = nbd_get_config_unlocked(nbd)
if (!config)
-> succeed
if (!test_bit(NBD_RT_BOUND, ...))
-> succeed
nbd_reconnect_socket
queue_work(nbd->recv_workq, &args->work)
4) step 1) release the reference;
5) Finially, recv_work() will trigger UAF:
recv_work
nbd_config_put(nbd)
-> nbd_config is freed
atomic_dec(&config->recv_threads)
-> UAF
Fix the problem by clearing NBD_RT_BOUND in nbd_genl_disconnect(), so
that nbd_genl_reconfigure() will fail. |
| In the Linux kernel, the following vulnerability has been resolved:
padata: fix UAF in padata_reorder
A bug was found when run ltp test:
BUG: KASAN: slab-use-after-free in padata_find_next+0x29/0x1a0
Read of size 4 at addr ffff88bbfe003524 by task kworker/u113:2/3039206
CPU: 0 PID: 3039206 Comm: kworker/u113:2 Kdump: loaded Not tainted 6.6.0+
Workqueue: pdecrypt_parallel padata_parallel_worker
Call Trace:
<TASK>
dump_stack_lvl+0x32/0x50
print_address_description.constprop.0+0x6b/0x3d0
print_report+0xdd/0x2c0
kasan_report+0xa5/0xd0
padata_find_next+0x29/0x1a0
padata_reorder+0x131/0x220
padata_parallel_worker+0x3d/0xc0
process_one_work+0x2ec/0x5a0
If 'mdelay(10)' is added before calling 'padata_find_next' in the
'padata_reorder' function, this issue could be reproduced easily with
ltp test (pcrypt_aead01).
This can be explained as bellow:
pcrypt_aead_encrypt
...
padata_do_parallel
refcount_inc(&pd->refcnt); // add refcnt
...
padata_do_serial
padata_reorder // pd
while (1) {
padata_find_next(pd, true); // using pd
queue_work_on
...
padata_serial_worker crypto_del_alg
padata_put_pd_cnt // sub refcnt
padata_free_shell
padata_put_pd(ps->pd);
// pd is freed
// loop again, but pd is freed
// call padata_find_next, UAF
}
In the padata_reorder function, when it loops in 'while', if the alg is
deleted, the refcnt may be decreased to 0 before entering
'padata_find_next', which leads to UAF.
As mentioned in [1], do_serial is supposed to be called with BHs disabled
and always happen under RCU protection, to address this issue, add
synchronize_rcu() in 'padata_free_shell' wait for all _do_serial calls
to finish.
[1] https://lore.kernel.org/all/20221028160401.cccypv4euxikusiq@parnassus.localdomain/
[2] https://lore.kernel.org/linux-kernel/jfjz5d7zwbytztackem7ibzalm5lnxldi2eofeiczqmqs2m7o6@fq426cwnjtkm/ |
| In the Linux kernel, the following vulnerability has been resolved:
padata: avoid UAF for reorder_work
Although the previous patch can avoid ps and ps UAF for _do_serial, it
can not avoid potential UAF issue for reorder_work. This issue can
happen just as below:
crypto_request crypto_request crypto_del_alg
padata_do_serial
...
padata_reorder
// processes all remaining
// requests then breaks
while (1) {
if (!padata)
break;
...
}
padata_do_serial
// new request added
list_add
// sees the new request
queue_work(reorder_work)
padata_reorder
queue_work_on(squeue->work)
...
<kworker context>
padata_serial_worker
// completes new request,
// no more outstanding
// requests
crypto_del_alg
// free pd
<kworker context>
invoke_padata_reorder
// UAF of pd
To avoid UAF for 'reorder_work', get 'pd' ref before put 'reorder_work'
into the 'serial_wq' and put 'pd' ref until the 'serial_wq' finish. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: do not force clear folio if buffer is referenced
Patch series "nilfs2: protect busy buffer heads from being force-cleared".
This series fixes the buffer head state inconsistency issues reported by
syzbot that occurs when the filesystem is corrupted and falls back to
read-only, and the associated buffer head use-after-free issue.
This patch (of 2):
Syzbot has reported that after nilfs2 detects filesystem corruption and
falls back to read-only, inconsistencies in the buffer state may occur.
One of the inconsistencies is that when nilfs2 calls mark_buffer_dirty()
to set a data or metadata buffer as dirty, but it detects that the buffer
is not in the uptodate state:
WARNING: CPU: 0 PID: 6049 at fs/buffer.c:1177 mark_buffer_dirty+0x2e5/0x520
fs/buffer.c:1177
...
Call Trace:
<TASK>
nilfs_palloc_commit_alloc_entry+0x4b/0x160 fs/nilfs2/alloc.c:598
nilfs_ifile_create_inode+0x1dd/0x3a0 fs/nilfs2/ifile.c:73
nilfs_new_inode+0x254/0x830 fs/nilfs2/inode.c:344
nilfs_mkdir+0x10d/0x340 fs/nilfs2/namei.c:218
vfs_mkdir+0x2f9/0x4f0 fs/namei.c:4257
do_mkdirat+0x264/0x3a0 fs/namei.c:4280
__do_sys_mkdirat fs/namei.c:4295 [inline]
__se_sys_mkdirat fs/namei.c:4293 [inline]
__x64_sys_mkdirat+0x87/0xa0 fs/namei.c:4293
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The other is when nilfs_btree_propagate(), which propagates the dirty
state to the ancestor nodes of a b-tree that point to a dirty buffer,
detects that the origin buffer is not dirty, even though it should be:
WARNING: CPU: 0 PID: 5245 at fs/nilfs2/btree.c:2089
nilfs_btree_propagate+0xc79/0xdf0 fs/nilfs2/btree.c:2089
...
Call Trace:
<TASK>
nilfs_bmap_propagate+0x75/0x120 fs/nilfs2/bmap.c:345
nilfs_collect_file_data+0x4d/0xd0 fs/nilfs2/segment.c:587
nilfs_segctor_apply_buffers+0x184/0x340 fs/nilfs2/segment.c:1006
nilfs_segctor_scan_file+0x28c/0xa50 fs/nilfs2/segment.c:1045
nilfs_segctor_collect_blocks fs/nilfs2/segment.c:1216 [inline]
nilfs_segctor_collect fs/nilfs2/segment.c:1540 [inline]
nilfs_segctor_do_construct+0x1c28/0x6b90 fs/nilfs2/segment.c:2115
nilfs_segctor_construct+0x181/0x6b0 fs/nilfs2/segment.c:2479
nilfs_segctor_thread_construct fs/nilfs2/segment.c:2587 [inline]
nilfs_segctor_thread+0x69e/0xe80 fs/nilfs2/segment.c:2701
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Both of these issues are caused by the callbacks that handle the
page/folio write requests, forcibly clear various states, including the
working state of the buffers they hold, at unexpected times when they
detect read-only fallback.
Fix these issues by checking if the buffer is referenced before clearing
the page/folio state, and skipping the clear if it is. |