| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Out-of-bounds write in the firmware for some Intel(R) Ethernet Controller E810 before version cvl fw 1.7.8.x within Ring 0: Bare Metal OS may allow a denial of service. System software adversary with a privileged user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Exposed ioctl with insufficient access control in the firmware for some Intel(R) Ethernet Connection E825-C. before version NVM ver. 3.84 within Ring 0: Bare Metal OS may allow a denial of service. System software adversary with a privileged user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Loop with unreachable exit condition ('infinite loop') for some Intel(R) Platform within Ring 0: Kernel may allow a denial of service. System software adversary with a privileged user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Exposure of sensitive information during transient execution for some TDX within Ring 0: Hypervisor may allow an information disclosure. Authorized adversary with a privileged user combined with a high complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Out-of-bounds read in the firmware for some Intel(R) Converged Security and Management Engine (CSME) Firmware (FW) within Ring 0: Kernel may allow an information disclosure. System software adversary with a privileged user combined with a low complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper authorization in the Intel(R) Quick Assist Technology for some Intel(R) Platforms within Ring 0: Kernel may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper handling of values in the microcode flow for some Intel(R) Processor Family may allow an escalation of privilege. Startup code and smm adversary with a privileged user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (low), integrity (low) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (low), integrity (low) and availability (none) impacts. |
| Incorrect default permissions for some Intel(R) Battery Life Diagnostic Tool within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Race condition for some TDX Module before version tdx1.5 within Ring 0: Hypervisor may allow a denial of service. Authorized adversary with a privileged user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (low) impacts. |
| Out-of-bounds read in the firmware for some 100GbE Intel(R) Ethernet Network Adapter E810 before version cvl fw 1.7.6, cpk 1.3.7 within Ring 0: Bare Metal OS may allow a denial of service. Network adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via network access when attack requirements are present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Out-of-bounds read for some TDX before version tdx module 1.5.24 within Ring 0: Hypervisor may allow an information disclosure. Authorized adversary with a privileged user combined with a low complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Out-of-bounds write in the firmware for the Intel(R) AMT and Intel(R) Standard Manageability within Ring 3: User Applications may allow a denial of service. Network adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via network access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (low) impacts. |
| Insecure inherited permissions for some Intel(R) Graphics Software before version 25.30.1702.0 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Uncontrolled search path for some AI Playground before version 2.6.1 beta within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Incorrect default permissions for some Intel(R) Graphics Driver software within Ring 2: Privileged Process may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Use of uninitialized variable for some TDX Module before version tdx1.5 within Ring 0: Hypervisor may allow an information disclosure. Authorized adversary with a privileged user combined with a high complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper conditions check in some firmware for some Intel(R) NPU Drivers within Ring 1: Device Drivers may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper conditions check in some firmware for some Intel(R) Graphics Drivers and Intel LTS kernels within Ring 1: Device Drivers may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (low) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper conditions check in some firmware for some Intel(R) NPU Drivers within Ring 1: Device Drivers may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Missing protection mechanism for alternate hardware interface in the Intel(R) Quick Assist Technology for some Intel(R) Platforms within Ring 0: Kernel may allow an escalation of privilege. System software adversary with a privileged user combined with a low complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |