| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An exploitable denial of service vulnerability exists in the GstRTSPAuth functionality of GStreamer/gst-rtsp-server 1.14.5. A specially crafted RTSP setup request can cause a null pointer deference resulting in denial-of-service. An attacker can send a malicious packet to trigger this vulnerability. |
| An exploitable code execution vulnerability exists in the TIFF fillinraster function of the igcore19d.dll library of Accusoft ImageGear 19.4, 19.5 and 19.6. A specially crafted TIFF file can cause an out-of-bounds write, resulting in remote code execution. An attacker can provide a malicious file to trigger this vulnerability. |
| An exploitable code execution vulnerability exists in the way Nitro Pro 13.9.1.155 parses Pattern objects. A specially crafted PDF file can trigger an integer overflow that can lead to arbitrary code execution. In order to trigger this vulnerability, victim must open a malicious file. |
| An exploitable code execution vulnerability exists in the Web-Based Management (WBM) functionality of WAGO PFC 200 03.03.10(15). A specially crafted series of HTTP requests can cause code execution resulting in remote code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability. |
| An exploitable code execution vulnerability exists in the ANI file format parser of Leadtools 20. A specially crafted ANI file can cause a buffer overflow resulting in remote code execution. An attacker can provide a malicious file to trigger this vulnerability. |
| An exploitable denial of service vulnerability exists in the ENIP Request Path Network Segment functionality of Allen-Bradley Flex IO 1794-AENT/B 4.003. A specially crafted network request can cause a loss of communications with the device resulting in denial-of-service. An attacker can send a malicious packet to trigger this vulnerability. |
| An exploitable denial of service vulnerability exists in the ENIP Request Path Data Segment functionality of Allen-Bradley Flex IO 1794-AENT/B. A specially crafted network request can cause a loss of communications with the device resulting in denial-of-service. An attacker can send a malicious packet to trigger this vulnerability If the ANSI Extended Symbol Segment Sub-Type is supplied, the device treats the byte following as the Data Size in words. When this value represents a size greater than what remains in the packet data, the device enters a fault state where communication with the device is lost and a physical power cycle is required. |
| An exploitable denial of service vulnerability exists in the ENIP Request Path Data Segment functionality of Allen-Bradley Flex IO 1794-AENT/B. A specially crafted network request can cause a loss of communications with the device resulting in denial-of-service. An attacker can send a malicious packet to trigger this vulnerability.If the Simple Segment Sub-Type is supplied, the device treats the byte following as the Data Size in words. When this value represents a size greater than what remains in the packet data, the device enters a fault state where communication with the device is lost and a physical power cycle is required. |
| An exploitable denial of service vulnerability exists in the ENIP Request Path Logical Segment functionality of Allen-Bradley Flex IO 1794-AENT/B 4.003. A specially crafted network request can cause a loss of communications with the device resulting in denial-of-service. An attacker can send a malicious packet to trigger this vulnerability by sending an Electronic Key Segment with less than 0x18 bytes following the Key Format field. |
| An exploitable denial of service vulnerability exists in the ENIP Request Path Logical Segment functionality of Allen-Bradley Flex IO 1794-AENT/B 4.003. A specially crafted network request can cause a loss of communications with the device resulting in denial-of-service. An attacker can send a malicious packet to trigger this vulnerability by sending an Electronic Key Segment with less bytes than required by the Key Format Table. |
| An exploitable denial of service vulnerability exists in the ENIP Request Path Port Segment functionality of Allen-Bradley Flex IO 1794-AENT/B. A specially crafted network request can cause a loss of communications with the device resulting in denial-of-service. An attacker can send a malicious packet to trigger this vulnerability. |
| An exploitable out-of-bounds write vulnerability exists in the ico_read function of the igcore19d.dll library of Accusoft ImageGear 19.6.0. A specially crafted ICO file can cause an out-of-bounds write, resulting in a remote code execution. An attacker needs to provide a malformed file to the victim to trigger the vulnerability. |
| An exploitable code execution vulnerability exists in the PLC_Task functionality of 3S-Smart Software Solutions GmbH CODESYS Runtime 3.5.14.30. A specially crafted network request can cause remote code execution. An attacker can send a malicious packet to trigger this vulnerability. |
| An exploitable denial-of-service vulnerability exists in the resource allocation handling of Videolabs libmicrodns 0.1.0. When encountering errors while parsing mDNS messages, some allocated data is not freed, possibly leading to a denial-of-service condition via resource exhaustion. An attacker can send one mDNS message repeatedly to trigger this vulnerability through the function rr_read_RR [5] reads the current resource record, except for the RDATA section. This is read by the loop at in rr_read. For each RR type, a different function is called. When the RR type is 0x10, the function rr_read_TXT is called at [6]. |
| An exploitable denial-of-service vulnerability exists in the resource allocation handling of Videolabs libmicrodns 0.1.0. When encountering errors while parsing mDNS messages, some allocated data is not freed, possibly leading to a denial-of-service condition via resource exhaustion. An attacker can send one mDNS message repeatedly to trigger this vulnerability through decoding of the domain name performed by rr_decode. |
| An exploitable denial-of-service vulnerability exists in the message-parsing functionality of Videolabs libmicrodns 0.1.0. When parsing mDNS messages in mdns_recv, the return value of the mdns_read_header function is not checked, leading to an uninitialized variable usage that eventually results in a null pointer dereference, leading to service crash. An attacker can send a series of mDNS messages to trigger this vulnerability. |
| An exploitable denial-of-service vulnerability exists in the message-parsing functionality of Videolabs libmicrodns 0.1.0. When parsing mDNS messages, the implementation does not properly keep track of the available data in the message, possibly leading to an out-of-bounds read that would result in a denial of service. An attacker can send an mDNS message to trigger this vulnerability. |
| An exploitable out-of-bounds write vulnerability exists in the igcore19d.dll ICO icoread parser of the Accusoft ImageGear 19.5.0 library. A specially crafted ICO file can cause an out-of-bounds write, resulting in a remote code execution. An attacker needs to provide a malformed file to the victim to trigger the vulnerability. |
| An exploitable out-of-bounds write vulnerability exists in the store_data_buffer function of the igcore19d.dll library of Accusoft ImageGear 19.5.0. A specially crafted PNG file can cause an out-of-bounds write, resulting in a remote code execution. An attacker needs to provide a malformed file to the victim to trigger the vulnerability. |
| An exploitable code execution vulnerability exists in the PDF parser of Nitro Pro 13.9.1.155. A specially crafted PDF document can cause a use-after-free which can lead to remote code execution. An attacker can provide a malicious file to trigger this vulnerability. |